Keywords: $S$-Noetherian ring; generalized power series ring; anti-Archimedean multiplicative set; $S$-finite ideal
@article{ARM_2007_43_1_a4,
author = {Liu, Zhongkui},
title = {On $S${-Noetherian} rings},
journal = {Archivum mathematicum},
pages = {55--60},
year = {2007},
volume = {43},
number = {1},
mrnumber = {2310124},
zbl = {1160.16307},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a4/}
}
Liu, Zhongkui. On $S$-Noetherian rings. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 55-60. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a4/
[1] Anderson D. D., Kang B. G., Park M. H.: Anti-archimedean rings and power series rings. Comm. Algebra 26 (1998), 3223–3238. | MR | Zbl
[2] Anderson D. D., Dumitrescu T.: $S$-Noetherian rings. Comm. Algebra 30 (2002), 4407–4416. | MR | Zbl
[3] Brookfield G.: Noetherian generalized power series rings. Comm. Algebra 32 (2004), 919–926. | MR | Zbl
[4] Kang B. G., Park M. H.: A localization of a power series ring over a valuation domain. J. Pure Appl. Algebra 140 (1999), 107–124. | MR | Zbl
[5] Liu Zhongkui: Endomorphism rings of modules of generalized inverse polynomials. Comm. Algebra 28 (2000), 803–814. | MR | Zbl
[6] Ribenboim P.: Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312. | MR | Zbl
[7] Ribenboim P.: Rings of generalized power series II: units and zero-divisors. J. Algebra 168 (1994), 71–89. | MR | Zbl
[8] Ribenboim P.: Special properties of generalized power series. J. Algebra 173 (1995), 566–586. | MR | Zbl
[9] Ribenboim P.: Semisimple rings and von Neumann regular rings of generalized power series. J. Algebra 198 (1997), 327–338. | MR
[10] Varadarajan K.: Noetherian generalized power series rings and modules. Comm. Algebra 29 (2001), 245–251. | MR | Zbl
[11] Varadarajan K.: Generalized power series modules. Comm. Algebra 29 (2001), 1281–1294. | MR | Zbl