On $S$-Noetherian rings
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 55-60 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated.
Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated.
Classification : 16P40
Keywords: $S$-Noetherian ring; generalized power series ring; anti-Archimedean multiplicative set; $S$-finite ideal
@article{ARM_2007_43_1_a4,
     author = {Liu, Zhongkui},
     title = {On $S${-Noetherian} rings},
     journal = {Archivum mathematicum},
     pages = {55--60},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2310124},
     zbl = {1160.16307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a4/}
}
TY  - JOUR
AU  - Liu, Zhongkui
TI  - On $S$-Noetherian rings
JO  - Archivum mathematicum
PY  - 2007
SP  - 55
EP  - 60
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a4/
LA  - en
ID  - ARM_2007_43_1_a4
ER  - 
%0 Journal Article
%A Liu, Zhongkui
%T On $S$-Noetherian rings
%J Archivum mathematicum
%D 2007
%P 55-60
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a4/
%G en
%F ARM_2007_43_1_a4
Liu, Zhongkui. On $S$-Noetherian rings. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 55-60. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a4/

[1] Anderson D. D., Kang B. G., Park M. H.: Anti-archimedean rings and power series rings. Comm. Algebra 26 (1998), 3223–3238. | MR | Zbl

[2] Anderson D. D., Dumitrescu T.: $S$-Noetherian rings. Comm. Algebra 30 (2002), 4407–4416. | MR | Zbl

[3] Brookfield G.: Noetherian generalized power series rings. Comm. Algebra 32 (2004), 919–926. | MR | Zbl

[4] Kang B. G., Park M. H.: A localization of a power series ring over a valuation domain. J. Pure Appl. Algebra 140 (1999), 107–124. | MR | Zbl

[5] Liu Zhongkui: Endomorphism rings of modules of generalized inverse polynomials. Comm. Algebra 28 (2000), 803–814. | MR | Zbl

[6] Ribenboim P.: Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312. | MR | Zbl

[7] Ribenboim P.: Rings of generalized power series II: units and zero-divisors. J. Algebra 168 (1994), 71–89. | MR | Zbl

[8] Ribenboim P.: Special properties of generalized power series. J. Algebra 173 (1995), 566–586. | MR | Zbl

[9] Ribenboim P.: Semisimple rings and von Neumann regular rings of generalized power series. J. Algebra 198 (1997), 327–338. | MR

[10] Varadarajan K.: Noetherian generalized power series rings and modules. Comm. Algebra 29 (2001), 245–251. | MR | Zbl

[11] Varadarajan K.: Generalized power series modules. Comm. Algebra 29 (2001), 1281–1294. | MR | Zbl