On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 39-53 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The higher-order nonlinear ordinary differential equation \[ x^{(n)} + \lambda p(t)f(x) = 0\,, \quad t \ge a\,, \] is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions $x(t;\lambda )$ satisfying $\lim _{t\rightarrow \infty }x(t;\lambda ) = 1$ is studied. The results can be applied to a singular eigenvalue problem.
The higher-order nonlinear ordinary differential equation \[ x^{(n)} + \lambda p(t)f(x) = 0\,, \quad t \ge a\,, \] is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions $x(t;\lambda )$ satisfying $\lim _{t\rightarrow \infty }x(t;\lambda ) = 1$ is studied. The results can be applied to a singular eigenvalue problem.
Classification : 34B40, 34C10
Keywords: nonoscillatory solutions; zeros of solutions; singular eigenvalue problems
@article{ARM_2007_43_1_a3,
     author = {Naito, Manabu},
     title = {On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations},
     journal = {Archivum mathematicum},
     pages = {39--53},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2310123},
     zbl = {1164.34014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a3/}
}
TY  - JOUR
AU  - Naito, Manabu
TI  - On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations
JO  - Archivum mathematicum
PY  - 2007
SP  - 39
EP  - 53
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a3/
LA  - en
ID  - ARM_2007_43_1_a3
ER  - 
%0 Journal Article
%A Naito, Manabu
%T On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations
%J Archivum mathematicum
%D 2007
%P 39-53
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a3/
%G en
%F ARM_2007_43_1_a3
Naito, Manabu. On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a3/

[1] Elias U.: Eigenvalue problems for the equation $Ly + \lambda p(x)y = 0$. J. Differential Equations 29 (1978), 28–57. | MR | Zbl

[2] Elias U.: Oscillation Theory of Two-Term Differential Equations. Kluwer, 1997. | MR | Zbl

[3] Elias U.: Singular eigenvalue problems for the equation $y^{(n)} + \lambda p(x)y = 0$. Monatsh. Math. 142 (2004), 205–225. | MR

[4] Elias U., Pinkus A.: Nonlinear eigenvalue problems for a class of ordinary differential equations. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 1333–1359. | MR | Zbl

[5] Hartman P.: Ordinary Differential Equations. Wiley, 1964. | MR | Zbl

[6] Kiguradze I. T., Chanturia T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer, 1993. | Zbl

[7] Naito M.: On the number of zeros of nonoscillatory solutions to higher-order linear ordinary differential equations. Monatsh. Math. 136 (2002), 237–242. | MR | Zbl

[8] Naito M., Naito Y.: Solutions with prescribed numbers of zeros for nonlinear second order differential equations. Funkcial. Ekvac. 37 (1994), 505–520. | MR | Zbl

[9] Naito Y., Tanaka S.: On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations. Nonlinear Anal. 56 (2004), 919–935. | MR | Zbl