Keywords: nonoscillatory solutions; zeros of solutions; singular eigenvalue problems
@article{ARM_2007_43_1_a3,
author = {Naito, Manabu},
title = {On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations},
journal = {Archivum mathematicum},
pages = {39--53},
year = {2007},
volume = {43},
number = {1},
mrnumber = {2310123},
zbl = {1164.34014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a3/}
}
TY - JOUR AU - Naito, Manabu TI - On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations JO - Archivum mathematicum PY - 2007 SP - 39 EP - 53 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a3/ LA - en ID - ARM_2007_43_1_a3 ER -
Naito, Manabu. On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a3/
[1] Elias U.: Eigenvalue problems for the equation $Ly + \lambda p(x)y = 0$. J. Differential Equations 29 (1978), 28–57. | MR | Zbl
[2] Elias U.: Oscillation Theory of Two-Term Differential Equations. Kluwer, 1997. | MR | Zbl
[3] Elias U.: Singular eigenvalue problems for the equation $y^{(n)} + \lambda p(x)y = 0$. Monatsh. Math. 142 (2004), 205–225. | MR
[4] Elias U., Pinkus A.: Nonlinear eigenvalue problems for a class of ordinary differential equations. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 1333–1359. | MR | Zbl
[5] Hartman P.: Ordinary Differential Equations. Wiley, 1964. | MR | Zbl
[6] Kiguradze I. T., Chanturia T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer, 1993. | Zbl
[7] Naito M.: On the number of zeros of nonoscillatory solutions to higher-order linear ordinary differential equations. Monatsh. Math. 136 (2002), 237–242. | MR | Zbl
[8] Naito M., Naito Y.: Solutions with prescribed numbers of zeros for nonlinear second order differential equations. Funkcial. Ekvac. 37 (1994), 505–520. | MR | Zbl
[9] Naito Y., Tanaka S.: On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations. Nonlinear Anal. 56 (2004), 919–935. | MR | Zbl