@article{ARM_2007_43_1_a2,
author = {Darafsheh, Mohammad Reza and Farjami, Yaghoub and Sadrudini, Abdollah},
title = {A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders},
journal = {Archivum mathematicum},
pages = {31--37},
year = {2007},
volume = {43},
number = {1},
mrnumber = {2310122},
zbl = {1156.20013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/}
}
TY - JOUR
AU - Darafsheh, Mohammad Reza
AU - Farjami, Yaghoub
AU - Sadrudini, Abdollah
TI - A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
JO - Archivum mathematicum
PY - 2007
SP - 31
EP - 37
VL - 43
IS - 1
UR - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/
LA - en
ID - ARM_2007_43_1_a2
ER -
%0 Journal Article
%A Darafsheh, Mohammad Reza
%A Farjami, Yaghoub
%A Sadrudini, Abdollah
%T A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
%J Archivum mathematicum
%D 2007
%P 31-37
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/
%G en
%F ARM_2007_43_1_a2
Darafsheh, Mohammad Reza; Farjami, Yaghoub; Sadrudini, Abdollah. A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/
[1] Aleeva M. R.: On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group. Math. Notes 73 3-4 (2003), 299–313. | MR | Zbl
[2] Brandl R., Shi W. J.: The characterization of $PSL(2,q)$ by its element orders. J. Algebra, 163 (1) (1994), 109–114. | MR
[3] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A.: Atlas of Finite Groups. Clarendon Press, Oxford, 1985. | MR | Zbl
[4] Darafsheh M. R., Karamzadeh N. S.: A characterization of groups $PSL(3,q)$ by their element orders for certain $q$. J. Appl. Math. Comput. (old KJCAM) 9 (2) (2002), 409–421. | MR
[5] Darafsheh M. R.: Some conjugacy classes in groups associated with the general linear groups. Algebras Groups Geom. 15 (1998), 183–199. | MR | Zbl
[6] Darafsheh M. R., Farjami Y.: Calculating the set of orders of elements in the finite linear groups. submitted. | Zbl
[7] Gorenstein D.: Finite groups. Harper and Row, New York, 1968. | MR | Zbl
[8] Higman G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32 (1957), 335–342. | MR | Zbl
[9] Kleidman P., Liebeck M.: The subgroup structure of finite classical groups. Cambridge University Press, 1990. | MR
[10] Kondratjev A. S.: On prime graph components of simple groups. Math. Sb. 180 (6) (1989), 787–797.
[11] Lipschutz S., Shi W. J.: Finite groups whose element orders do not exceed twenty. Progr. Natur. Sci. 10 (1) (2000), 11–21. | MR
[12] Mazurov V. D., Xu M. C., Cao H. P.: Recognition of finite simple groups $L_{3}(2^{m})$ and $U_{3}(2^{m})$ by their element orders. Algebra Logika 39 (5) (2000), 567–585. | MR
[13] Mazurov V. D.: Characterization of finite groups by sets of orders of their elements. Algebra Logika 36 (1) (1997), 37–53. | MR
[14] Passman D. S.: Permutation groups. W. A. Bengamin, New York, 1968. | MR | Zbl
[15] Shi W. J.: A characteristic property of $\mathbb{A}_{5}$. J. Southwest-China Teachers Univ. (B) 3 (1986), 11–14. | MR
[16] Shi W. J.: A characteristic property of $PSL_{2}(7)$. J. Austral. Math. Soc. (A) 36 (3) (1984), 354–356. | MR
[17] Shi W. J.: A characterization of some projective special linear groups. J. Southwest-China Teachers Univ. (B) 2 (1985), 2–10. | MR | Zbl
[18] Shi W. J.: A characteristic property of $J_{1}$ and $PSL_{2}(2^{n})$. Adv. Math. (in Chinese) 16 (4) (1987), 397–401.
[19] Shi W., Bi J.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180. | MR | Zbl
[20] Willams J. S.: Prime graph components of finite groups. J. Algebra 69 (2) (1981), 487–513. | MR