A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 31-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\omega (G)$ denote the set of element orders of a finite group $G$. If $H$ is a finite non-abelian simple group and $\omega (H)=\omega (G)$ implies $G$ contains a unique non-abelian composition factor isomorphic to $H$, then $G$ is called quasirecognizable by the set of its element orders. In this paper we will prove that the group $PSL_{4}(5)$ is quasirecognizable.
Let $\omega (G)$ denote the set of element orders of a finite group $G$. If $H$ is a finite non-abelian simple group and $\omega (H)=\omega (G)$ implies $G$ contains a unique non-abelian composition factor isomorphic to $H$, then $G$ is called quasirecognizable by the set of its element orders. In this paper we will prove that the group $PSL_{4}(5)$ is quasirecognizable.
Classification : 20D06, 20D60
Keywords: projective special linear group; element order
@article{ARM_2007_43_1_a2,
     author = {Darafsheh, Mohammad Reza and Farjami, Yaghoub and Sadrudini, Abdollah},
     title = {A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders},
     journal = {Archivum mathematicum},
     pages = {31--37},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2310122},
     zbl = {1156.20013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/}
}
TY  - JOUR
AU  - Darafsheh, Mohammad Reza
AU  - Farjami, Yaghoub
AU  - Sadrudini, Abdollah
TI  - A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
JO  - Archivum mathematicum
PY  - 2007
SP  - 31
EP  - 37
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/
LA  - en
ID  - ARM_2007_43_1_a2
ER  - 
%0 Journal Article
%A Darafsheh, Mohammad Reza
%A Farjami, Yaghoub
%A Sadrudini, Abdollah
%T A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
%J Archivum mathematicum
%D 2007
%P 31-37
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/
%G en
%F ARM_2007_43_1_a2
Darafsheh, Mohammad Reza; Farjami, Yaghoub; Sadrudini, Abdollah. A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a2/

[1] Aleeva M. R.: On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group. Math. Notes 73 3-4 (2003), 299–313. | MR | Zbl

[2] Brandl R., Shi W. J.: The characterization of $PSL(2,q)$ by its element orders. J. Algebra, 163 (1) (1994), 109–114. | MR

[3] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A.: Atlas of Finite Groups. Clarendon Press, Oxford, 1985. | MR | Zbl

[4] Darafsheh M. R., Karamzadeh N. S.: A characterization of groups $PSL(3,q)$ by their element orders for certain $q$. J. Appl. Math. Comput. (old KJCAM) 9 (2) (2002), 409–421. | MR

[5] Darafsheh M. R.: Some conjugacy classes in groups associated with the general linear groups. Algebras Groups Geom. 15 (1998), 183–199. | MR | Zbl

[6] Darafsheh M. R., Farjami Y.: Calculating the set of orders of elements in the finite linear groups. submitted. | Zbl

[7] Gorenstein D.: Finite groups. Harper and Row, New York, 1968. | MR | Zbl

[8] Higman G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32 (1957), 335–342. | MR | Zbl

[9] Kleidman P., Liebeck M.: The subgroup structure of finite classical groups. Cambridge University Press, 1990. | MR

[10] Kondratjev A. S.: On prime graph components of simple groups. Math. Sb. 180 (6) (1989), 787–797.

[11] Lipschutz S., Shi W. J.: Finite groups whose element orders do not exceed twenty. Progr. Natur. Sci. 10 (1) (2000), 11–21. | MR

[12] Mazurov V. D., Xu M. C., Cao H. P.: Recognition of finite simple groups $L_{3}(2^{m})$ and $U_{3}(2^{m})$ by their element orders. Algebra Logika 39 (5) (2000), 567–585. | MR

[13] Mazurov V. D.: Characterization of finite groups by sets of orders of their elements. Algebra Logika 36 (1) (1997), 37–53. | MR

[14] Passman D. S.: Permutation groups. W. A. Bengamin, New York, 1968. | MR | Zbl

[15] Shi W. J.: A characteristic property of $\mathbb{A}_{5}$. J. Southwest-China Teachers Univ. (B) 3 (1986), 11–14. | MR

[16] Shi W. J.: A characteristic property of $PSL_{2}(7)$. J. Austral. Math. Soc. (A) 36 (3) (1984), 354–356. | MR

[17] Shi W. J.: A characterization of some projective special linear groups. J. Southwest-China Teachers Univ. (B) 2 (1985), 2–10. | MR | Zbl

[18] Shi W. J.: A characteristic property of $J_{1}$ and $PSL_{2}(2^{n})$. Adv. Math. (in Chinese) 16 (4) (1987), 397–401.

[19] Shi W., Bi J.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180. | MR | Zbl

[20] Willams J. S.: Prime graph components of finite groups. J. Algebra 69 (2) (1981), 487–513. | MR