Classification of rings satisfying some constraints on subsets
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 19-29 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be an associative ring with identity $1$ and $J(R)$ the Jacobson radical of $R$. Suppose that $m\ge 1$ is a fixed positive integer and $R$ an $m$-torsion-free ring with $1$. In the present paper, it is shown that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m]=0$ for all $x,y\in R\backslash J(R)$ and (ii) $[x,[x,y^m]]=0$, for all $x,y\in R\backslash J(R)$. This result is also valid if (ii) is replaced by (ii)’ $[(yx)^mx^m-x^m(xy)^m,x]=0$, for all $x,y\in R\backslash N(R)$. Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).
Let $R$ be an associative ring with identity $1$ and $J(R)$ the Jacobson radical of $R$. Suppose that $m\ge 1$ is a fixed positive integer and $R$ an $m$-torsion-free ring with $1$. In the present paper, it is shown that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m]=0$ for all $x,y\in R\backslash J(R)$ and (ii) $[x,[x,y^m]]=0$, for all $x,y\in R\backslash J(R)$. This result is also valid if (ii) is replaced by (ii)’ $[(yx)^mx^m-x^m(xy)^m,x]=0$, for all $x,y\in R\backslash N(R)$. Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).
Classification : 16U80
Keywords: Jacobson radical; nil commutator; periodic ring
@article{ARM_2007_43_1_a1,
     author = {Khan, Moharram A.},
     title = {Classification of rings satisfying some constraints on subsets},
     journal = {Archivum mathematicum},
     pages = {19--29},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2310121},
     zbl = {1156.16304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a1/}
}
TY  - JOUR
AU  - Khan, Moharram A.
TI  - Classification of rings satisfying some constraints on subsets
JO  - Archivum mathematicum
PY  - 2007
SP  - 19
EP  - 29
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a1/
LA  - en
ID  - ARM_2007_43_1_a1
ER  - 
%0 Journal Article
%A Khan, Moharram A.
%T Classification of rings satisfying some constraints on subsets
%J Archivum mathematicum
%D 2007
%P 19-29
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a1/
%G en
%F ARM_2007_43_1_a1
Khan, Moharram A. Classification of rings satisfying some constraints on subsets. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 19-29. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a1/

[1] Abu-Khuzam H., Tominaga H., Yaqub A.: Commutativity theorems for $s$-unital rings satisfying polynomial identities. Math. J. Okayama Univ. 22 (1980), 111–114. | MR | Zbl

[2] Abu-Khuzam H.: A commutativity theorem for periodic rings. Math. Japon. 32 (1987), 1–3. | MR | Zbl

[3] Abu-Khuzam H., Bell H. E., Yaqub A.: Commutativity of rings satisfying certain polynomial identities. Bull. Austral. Math. Soc. 44 (1991), 63–69. | MR | Zbl

[4] Abu-Khuzam H., Yaqub A.: Commutativity of rings satisfying some polynomial constraints. Acta Math. Hungar. 67 (1995), 207–217. | MR

[5] Bell H. E.: Some commutativity results for periodic rings. Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. | MR | Zbl

[6] Bell H. E.: On rings with commutativity powers. Math. Japon. 24 (1979), 473–478. | MR

[7] Herstein I. N.: A note on rings with central nilpotent elements. Proc. Amer. Math. Soc. 5 (1954), 620. | MR | Zbl

[8] Herstein I. N.: A commutativity theorem. J. Algebra 38 (1976), 112–118. | MR | Zbl

[9] Herstein I. N.: Power maps in rings. Michigan Math. J. 8 (1961), 29–32. | MR | Zbl

[10] Hirano Y., Hongon M., Tominaga H.: Commutativity theorems for certain rings. Math. J. Okayama Univ. 22 (1980), 65–72. | MR

[11] Hongan M., Tominaga H.: Some commutativity theorems for semiprime rings. Hokkaido Math. J. 10 (1981), 271–277. | MR

[12] Jacobson N.: Structure of Rings. Amer. Math. Soc. Colloq. Publ. Providence 1964.

[13] Kezlan T. P.: A note on commutativity of semiprime $PI$-rings. Math. Japon. 27 (1982), 267–268. | MR | Zbl

[14] Khan M. A.: Commutativity of rings with constraints involving a subset. Czechoslovak Math. J. 53 (2003), 545–559. | MR | Zbl

[15] Nicholson W. K., Yaqub A.: A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419–423. | MR | Zbl