Calculations in new sequence spaces
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 1-18 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we define new sequence spaces using the concepts of strong summability and boundedness of index $p>0$ of $r$-th order difference sequences. We establish sufficient conditions for these spaces to reduce to certain spaces of null and bounded sequences.
In this paper we define new sequence spaces using the concepts of strong summability and boundedness of index $p>0$ of $r$-th order difference sequences. We establish sufficient conditions for these spaces to reduce to certain spaces of null and bounded sequences.
Classification : 40H05, 46A45
Keywords: infinite linear system; operator of first order difference; Banach algebra with identity; BK space
@article{ARM_2007_43_1_a0,
     author = {de Malafosse, Bruno},
     title = {Calculations in new sequence spaces},
     journal = {Archivum mathematicum},
     pages = {1--18},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2310120},
     zbl = {1164.40013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a0/}
}
TY  - JOUR
AU  - de Malafosse, Bruno
TI  - Calculations in new sequence spaces
JO  - Archivum mathematicum
PY  - 2007
SP  - 1
EP  - 18
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a0/
LA  - en
ID  - ARM_2007_43_1_a0
ER  - 
%0 Journal Article
%A de Malafosse, Bruno
%T Calculations in new sequence spaces
%J Archivum mathematicum
%D 2007
%P 1-18
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a0/
%G en
%F ARM_2007_43_1_a0
de Malafosse, Bruno. Calculations in new sequence spaces. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a0/

[1] Maddox I. J.: Infinite matrices of operators. Springer-Verlag, Berlin, Heidelberg and New York, 1980. | MR | Zbl

[2] de Malafosse B.: Properties of some sets of sequences and application to the spaces of bounded difference sequences of order $\mu $. Hokkaido Math. J. 31 (2002), 283–299. | MR | Zbl

[3] de Malafosse B.: Sets of sequences that are strongly $\tau $-bounded and matrix transformations between these sets. Demonstratio Math. 36 1 (2003), 155–171. | MR | Zbl

[4] de Malafosse B.: Variation of an element in the operator of first difference. Novi Sad J. Math. 32 1, (2002), 141–158. | MR

[5] de Malafosse B.: On the set of sequences that are strongly $\alpha $-bounded and $\alpha $-convergent to naught with index $p$. Seminar. Mat. Torino 61 (2003), 13–32. | MR

[6] de Malafosse B.: On matrix transformations and sequence spaces. Rend. Circ. Mat. Palermo (2) 52 (2003), 189–210. | MR | Zbl

[7] de Malafosse B.: On some BK space. Internat. J. Math. Math. Sci. 28 (2003), 1783–1801. | MR

[8] de Malafosse B.: Calculations on some sequence spaces. Internat. J. Math. Math. Sci. 29–32 (2004), 1653–1670. | MR | Zbl

[9] de Malafosse B., Malkowsky E.: Sequence spaces and inverse of an infinite matrix. Rend. Circ. Mat. Palermo (2) 51 (2002), 277–294. | MR | Zbl

[10] de Malafosse B., Malkowsky E.: Matrix transformations in the sets $\chi \left( \overline{N}_{p}\overline{N}_{q}\right) $ where $\chi $ is in the form s$_{\xi }$, or s$_{\xi }^{{{}^{\circ }}}$, or s$_{\xi }^{\left( c\right) }$. Filomat 17 (2003), 85–106.

[11] Malkowsky E.: Linear operators in certain BK spaces. Bolyai Soc. Math. Stud. 5 (1996), 259–273. | MR | Zbl

[12] Malkowsky E.: Linear operators between some matrix domains. Rend. Circ. Mat. Palermo (2) 68 (2002), 641–655. | MR | Zbl

[13] Malkowsky E., Parashar S. D.: Matrix transformations in spaces of bounded and convergent difference sequences of order $m$. Analysis 17 (1997), 87–97. | MR | Zbl

[14] Malkowsky E., Rakočević V.: An introduction into the theory of sequence spaces and measure of noncompactness. Zb. Rad. (Beogr.) 9 (17) (2000), 143–243. | MR

[15] Wilansky A.: Summability through Functional Analysis. North-Holland Math. Stud. 85, 1984. | MR | Zbl