Generalized Verma module homomorphisms in singular character
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 229-240
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the $k$-th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.
In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the $k$-th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.
@article{ARM_2006_42_5_a9,
author = {Franek, Peter},
title = {Generalized {Verma} module homomorphisms in singular character},
journal = {Archivum mathematicum},
pages = {229--240},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322409},
zbl = {1164.22310},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a9/}
}
Franek, Peter. Generalized Verma module homomorphisms in singular character. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 229-240. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a9/
[1] Cap A., Slovák J.: Parabolic geometries. preprint | Zbl
[2] Eastwood M.: Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. bf 109 2 (1987), 207–228. | MR | Zbl
[3] Goodman R., Wallach N.: Representations and invariants of the classical groups. Cambgidge University Press, Cambridge, 1998. | MR | Zbl
[4] Slovák J., Souček V.: Invariant operators of the first order on manifolds with a given parabolic structure. Seminarires et congres 4, SMF, 2000, 251-276. | MR | Zbl
[5] Bureš J., Souček V.: Regular spinor valued mappings. Seminarii di Geometria, Bologna 1984, ed. S. Coen, Bologna, 1986, 7–22. | MR