Generalized Verma module homomorphisms in singular character
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 229-240 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the $k$-th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.
In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the $k$-th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.
Classification : 22Exx, 58Jxx
@article{ARM_2006_42_5_a9,
     author = {Franek, Peter},
     title = {Generalized {Verma} module homomorphisms in singular character},
     journal = {Archivum mathematicum},
     pages = {229--240},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322409},
     zbl = {1164.22310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a9/}
}
TY  - JOUR
AU  - Franek, Peter
TI  - Generalized Verma module homomorphisms in singular character
JO  - Archivum mathematicum
PY  - 2006
SP  - 229
EP  - 240
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a9/
LA  - en
ID  - ARM_2006_42_5_a9
ER  - 
%0 Journal Article
%A Franek, Peter
%T Generalized Verma module homomorphisms in singular character
%J Archivum mathematicum
%D 2006
%P 229-240
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a9/
%G en
%F ARM_2006_42_5_a9
Franek, Peter. Generalized Verma module homomorphisms in singular character. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 229-240. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a9/

[1] Cap A., Slovák J.: Parabolic geometries. preprint | Zbl

[2] Eastwood M.: Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. bf 109 2 (1987), 207–228. | MR | Zbl

[3] Goodman R., Wallach N.: Representations and invariants of the classical groups. Cambgidge University Press, Cambridge, 1998. | MR | Zbl

[4] Slovák J., Souček V.: Invariant operators of the first order on manifolds with a given parabolic structure. Seminarires et congres 4, SMF, 2000, 251-276. | MR | Zbl

[5] Bureš J., Souček V.: Regular spinor valued mappings. Seminarii di Geometria, Bologna 1984, ed. S. Coen, Bologna, 1986, 7–22. | MR