Geodesic graphs on special 7-dimensional g.o. manifolds
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 213-227 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds $M=[{\rm SO}(5)\times {\rm SO}(2)]/{\rm U}(2)$ and $M=[{\rm SO}(4,1)\times {\rm SO}(2)]/{\rm U}(2)$. They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining metrics (in the compact case).
In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds $M=[{\rm SO}(5)\times {\rm SO}(2)]/{\rm U}(2)$ and $M=[{\rm SO}(4,1)\times {\rm SO}(2)]/{\rm U}(2)$. They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining metrics (in the compact case).
Classification : 53C22, 53C30
Keywords: naturally reductive spaces; Riemannian g.o. spaces; geodesic graph
@article{ARM_2006_42_5_a8,
     author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
     title = {Geodesic graphs on special 7-dimensional g.o. manifolds},
     journal = {Archivum mathematicum},
     pages = {213--227},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322408},
     zbl = {1164.53361},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a8/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
AU  - Kowalski, Oldřich
TI  - Geodesic graphs on special 7-dimensional g.o. manifolds
JO  - Archivum mathematicum
PY  - 2006
SP  - 213
EP  - 227
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a8/
LA  - en
ID  - ARM_2006_42_5_a8
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%A Kowalski, Oldřich
%T Geodesic graphs on special 7-dimensional g.o. manifolds
%J Archivum mathematicum
%D 2006
%P 213-227
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a8/
%G en
%F ARM_2006_42_5_a8
Dušek, Zdeněk; Kowalski, Oldřich. Geodesic graphs on special 7-dimensional g.o. manifolds. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 213-227. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a8/

[1] Dušek Z.: Explicit geodesic graphs on some H-type groups. Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. | MR | Zbl

[2] Dušek Z., and Kowalski O.: Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr., 254-255 (2003), 87–96. | MR

[3] Dušek Z., Kowalski O., Nikčević S. Ž.: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65–78. | MR | Zbl

[4] Kobayashi S., and Nomizu N.: Foundations of differential geometry - I. Interscience Publishers, New York, 1963.

[5] Kobayashi S., and Nomizu N.: Foundations of differential geometry - II. Interscience Publishers, New York, 1969.

[6] Kowalski O., and Nikčević S. Ž.: On geodesic graphs of Riemannian g.o. spaces. Arch. Math. 73 (1999), 223–234. | MR

[7] Kowalski O., and Nikčević S. Ž.: On geodesic graphs of Riemannian g.o. spaces - Appendix. Arch. Math. 79 (2002), 158–160. | MR

[8] Kowalski O., and Vanhecke L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B(7)5 (1991), 189–246. | MR

[9] Szenthe J.: Sur la connection naturelle à torsion nulle. Acta Sci. Math. (Szeged) 38 (1976), 383–398. | MR