@article{ARM_2006_42_5_a7,
author = {Damiano, Alberto},
title = {Algebraic analysis of the {Rarita-Schwinger} system in real dimension three},
journal = {Archivum mathematicum},
pages = {197--211},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322407},
zbl = {1164.53357},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a7/}
}
Damiano, Alberto. Algebraic analysis of the Rarita-Schwinger system in real dimension three. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 197-211. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a7/
[1] Adams W. W., Berenstein C. A., Loustaunau P., Sabadini I., Struppa D. C.: Regular functions of several quaternionic variables and the Cauchy–Fueter complex. J. Geom. Anal. 9 (1999), 1–16. | MR | Zbl
[2] Adams W. W., Loustaunau P.: Analysis of the module determining the properties of regular functions of several quaternionic variables. Pacific J. Math. 196 (2000), no. 1, 1–15. | MR
[3] Bureš J.: The Rarita-Schwinger operator and spherical monogenic forms. Complex Variables Theory Appl. 43 (2000), no. 1, 77–108. | MR | Zbl
[4] Bureš J., Damiano A., Sabadini I.: Explicit resolutions for the complex several Fueter operators. J. Geom. Phys. 57 3 (2007), 765–775. | MR
[5] Bureš J., Sommen F., Souček V., Van Lancker P.: Rarita-Schwinger type operators in Clifford analysis. J. Funct. Anal. 185 (2001), no. 2, 425–455. | MR | Zbl
[6] CoCoATeam: CoCoA. A software package for COmputations in COmmutative Algebra, freely available at http://cocoa.dima.unige.it
[7] Colombo F., Damiano A., Sabadini I., Struppa D. C.: A surjectivity theorem for differential operators on spaces of regular functions. Complex Variables Theory Appl. 50 (2005), no. 6, 389–400. | MR | Zbl
[8] Colombo F., Souček V., Struppa D. C.: Invariant resolutions for several Fueter operators. J. Geom. Phys. 56 7 (2006), 1175–1191. | MR | Zbl
[9] Colombo F., Damiano A., Sabadini I., Struppa D. C.: A new Dolbeault complex in quaternionic and Clifford analysis. to appear in Proceedings Fifth ISAAC Congress, Catania, 2005. | MR | Zbl
[10] Colombo F., Sabadini I., Sommen F., Struppa D. C.: Analysis of Dirac systems and computational algebra. Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004. | MR | Zbl
[11] Damiano A.: Computational Approach to some Problems in Algebraic Analysis. Ph.D. Dissertation, George Mason University, 2005. | MR
[12] Damiano A., Mannino S.: CoAlA. A web page for COmputational ALgebraic Analysis available at http://www.tlc185.com/coala
[13] Damiano A., Sabadini I., Struppa D. C.: New algebraic properties of biregular functions in $2n$ quaternionic variables. Compl. Var. Ell. Eq. 51 (2006), No. 5–6, 497–510. 2006. | MR | Zbl
[14] Damiano A., Sabadini I., Struppa D. C.: Computational methods for the construction of a class of noetherian operators. to appear in Exp. Math. | MR | Zbl
[15] Delanghe R., Sommen F., Soucek V.: Clifford Algebra and Spinor-valued Functions. Math. Appl. 53, Kluwer Academic Publishers, 1992. | MR | Zbl
[16] Eisenbud D.: The Geometry of Syzygies. Graduate Texts in Mathematics, Vol. 229, Springer-Verlag, New York, 2005. | MR | Zbl
[17] Homma Y.: The Higher Spin Dirac Operators on $3$–Dimensional Manifolds. Tokyo J. Math. 24 (2001), no. 2, 579–596. | MR | Zbl
[18] Kreuzer M., Robbiano L.: Computational Commutative Algebra 1. Springer, 2000. | MR
[19] Kreuzer M., Robbiano L.: Computational Commutative Algebra 2. Springer, 2005. | MR
[20] Palamodov V. P.: Linear Differential Operators with Constant Coefficients. Springer Verlag, New York 1970. | MR | Zbl
[21] Sabadini I., Sommen F., Struppa D. C.: The Dirac complex on abstract vector variables: megaforms. Exp. Math., 12 (2003), 351–364. | MR | Zbl
[22] Sabadini I., Shapiro M., Struppa D. C.: Algebraic analysis of the Moisil-Theodorescu system. Complex Variables Theory Appl. 40 (2000), 333–357. | MR | Zbl
[23] Sabadini I., Sommen F., Struppa D. C., Van Lancker P.: Complexes of Dirac operators in Clifford algebras. Math. Z., 239 (2002), 293–320. | MR | Zbl
[24] Souček V.: Invariant operators and Clifford analysis. Adv. Appl. Clifford Algebras 11 (2001), no. S1, 37–52. | MR | Zbl