On left invariant CR structures on ${\rm SU}(2)$
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 185-195 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

There is a well known one–parameter family of left invariant CR structures on $SU(2)\cong S^3$. We show how purely algebraic methods can be used to explicitly compute the canonical Cartan connections associated to these structures and their curvatures. We also obtain explicit descriptions of tractor bundles and tractor connections.
There is a well known one–parameter family of left invariant CR structures on $SU(2)\cong S^3$. We show how purely algebraic methods can be used to explicitly compute the canonical Cartan connections associated to these structures and their curvatures. We also obtain explicit descriptions of tractor bundles and tractor connections.
Classification : 32Vxx, 53Cxx
@article{ARM_2006_42_5_a6,
     author = {\v{C}ap, Andreas},
     title = {On left invariant {CR} structures on ${\rm SU}(2)$},
     journal = {Archivum mathematicum},
     pages = {185--195},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322406},
     zbl = {1164.32304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a6/}
}
TY  - JOUR
AU  - Čap, Andreas
TI  - On left invariant CR structures on ${\rm SU}(2)$
JO  - Archivum mathematicum
PY  - 2006
SP  - 185
EP  - 195
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a6/
LA  - en
ID  - ARM_2006_42_5_a6
ER  - 
%0 Journal Article
%A Čap, Andreas
%T On left invariant CR structures on ${\rm SU}(2)$
%J Archivum mathematicum
%D 2006
%P 185-195
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a6/
%G en
%F ARM_2006_42_5_a6
Čap, Andreas. On left invariant CR structures on ${\rm SU}(2)$. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 185-195. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a6/

[1] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. Ann. Mat. Pura Appl., IV. Ser. 11 (1932), 17–90. | MR | Zbl

[2] Čap A.: Automorphism groups of parabolic geometries. in: Proceedings of the 24th Winter School on Geometry and Physics, Srni 2004, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 233–239. | MR | Zbl

[3] Čap A.: Two constructions with parabolic geometries. Proceedings of the 25th Winter School on Geometry and Physics, Srni 2005, Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 11–38, preprint math.DG/0504389. | MR | Zbl

[4] Čap A.: Infinitesimal automorphisms and deformations of parabolic geometries. preprint math.DG/050835. | MR | Zbl

[5] Čap A., Gover A. R.: Tractor calculi for parabolic geometries. Trans. Amer. Math. Soc. 354 (2002), 1511–1548. | MR | Zbl

[6] Čap A., Schichl H.: Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29 No.3 (2000), 453–505. | MR | Zbl

[7] Gover A. R., Graham C. R.: CR invariant powers of the sub-Laplacian. J. Reine Angew. Math. 583 (2005), 1–27. | MR | Zbl