Spectrum generating on twistor bundle
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 169-183 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Spectrum generating technique introduced by Ólafsson, Ørsted, and one of the authors in the paper (Branson, T., Ólafsson, G. and Ørsted, B., Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups, J. Funct. Anal. 135 (1996), 163–205.) provides an efficient way to construct certain intertwinors when $K$-types are of multiplicity at most one. Intertwinors on the twistor bundle over $S^1\times S^{n-1}$ have some $K$-types of multiplicity 2. With some additional calculation along with the spectrum generating technique, we give explicit formulas for these intertwinors of all orders.
Spectrum generating technique introduced by Ólafsson, Ørsted, and one of the authors in the paper (Branson, T., Ólafsson, G. and Ørsted, B., Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups, J. Funct. Anal. 135 (1996), 163–205.) provides an efficient way to construct certain intertwinors when $K$-types are of multiplicity at most one. Intertwinors on the twistor bundle over $S^1\times S^{n-1}$ have some $K$-types of multiplicity 2. With some additional calculation along with the spectrum generating technique, we give explicit formulas for these intertwinors of all orders.
Classification : 22E46, 53C28
@article{ARM_2006_42_5_a5,
     author = {Branson, Thomas and Hong, Doojin},
     title = {Spectrum generating on twistor bundle},
     journal = {Archivum mathematicum},
     pages = {169--183},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322405},
     zbl = {1164.53358},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a5/}
}
TY  - JOUR
AU  - Branson, Thomas
AU  - Hong, Doojin
TI  - Spectrum generating on twistor bundle
JO  - Archivum mathematicum
PY  - 2006
SP  - 169
EP  - 183
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a5/
LA  - en
ID  - ARM_2006_42_5_a5
ER  - 
%0 Journal Article
%A Branson, Thomas
%A Hong, Doojin
%T Spectrum generating on twistor bundle
%J Archivum mathematicum
%D 2006
%P 169-183
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a5/
%G en
%F ARM_2006_42_5_a5
Branson, Thomas; Hong, Doojin. Spectrum generating on twistor bundle. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 169-183. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a5/

[1] Branson T.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74 (1987), 199–291. | MR | Zbl

[2] Branson T.: Nonlinear phenomena in the spectral theory of geometric linear differential operators. Proc. Symp. Pure Math. 59 (1996), 27–65. | MR | Zbl

[3] Branson T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151 (1997), 334–383. | MR | Zbl

[4] Branson T.: Spectra of self-gradients on spheres. J. Lie Theory 9 (1999), 491–506. | MR | Zbl

[5] Branson T., Ólafsson G., Ørsted B.: Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups. J. Funct. Anal. 135 (1996), 163–205. | MR

[6] Hong D.: Eigenvalues of Dirac and Rarita-Schwinger operators. Clifford Algebras and their Applications in Mathematical Physics, Birkhäuser, 2000. | MR | Zbl

[7] Hong D.: Spectra of higher spin operators. Ph.D. Dissertation, University of Iowa, 2004. | MR

[8] Kosmann Y.: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. 91 (1972), 317–395. | MR | Zbl

[9] Ørsted B.: Conformally invariant differential equations and projective geometry. J. Funct. Anal. 44 (1981), 1–23. | MR | Zbl