@article{ARM_2006_42_5_a5,
author = {Branson, Thomas and Hong, Doojin},
title = {Spectrum generating on twistor bundle},
journal = {Archivum mathematicum},
pages = {169--183},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322405},
zbl = {1164.53358},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a5/}
}
Branson, Thomas; Hong, Doojin. Spectrum generating on twistor bundle. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 169-183. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a5/
[1] Branson T.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74 (1987), 199–291. | MR | Zbl
[2] Branson T.: Nonlinear phenomena in the spectral theory of geometric linear differential operators. Proc. Symp. Pure Math. 59 (1996), 27–65. | MR | Zbl
[3] Branson T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151 (1997), 334–383. | MR | Zbl
[4] Branson T.: Spectra of self-gradients on spheres. J. Lie Theory 9 (1999), 491–506. | MR | Zbl
[5] Branson T., Ólafsson G., Ørsted B.: Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups. J. Funct. Anal. 135 (1996), 163–205. | MR
[6] Hong D.: Eigenvalues of Dirac and Rarita-Schwinger operators. Clifford Algebras and their Applications in Mathematical Physics, Birkhäuser, 2000. | MR | Zbl
[7] Hong D.: Spectra of higher spin operators. Ph.D. Dissertation, University of Iowa, 2004. | MR
[8] Kosmann Y.: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. 91 (1972), 317–395. | MR | Zbl
[9] Ørsted B.: Conformally invariant differential equations and projective geometry. J. Funct. Anal. 44 (1981), 1–23. | MR | Zbl