Lectures on generalized complex geometry and supersymmetry
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 119-146 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

These are the lecture notes from the 26th Winter School “Geometry and Physics", Czech Republic, Srní, January 14 – 21, 2006. These lectures are an introduction into the realm of generalized geometry based on the tangent plus the cotangent bundle. In particular we discuss the relation of this geometry to physics, namely to two-dimensional field theories. We explain in detail the relation between generalized complex geometry and supersymmetry. We briefly review the generalized Kähler and generalized Calabi-Yau manifolds and explain their appearance in physics.
These are the lecture notes from the 26th Winter School “Geometry and Physics", Czech Republic, Srní, January 14 – 21, 2006. These lectures are an introduction into the realm of generalized geometry based on the tangent plus the cotangent bundle. In particular we discuss the relation of this geometry to physics, namely to two-dimensional field theories. We explain in detail the relation between generalized complex geometry and supersymmetry. We briefly review the generalized Kähler and generalized Calabi-Yau manifolds and explain their appearance in physics.
Classification : 53C15, 53D17
@article{ARM_2006_42_5_a3,
     author = {Zabzine, Maxim},
     title = {Lectures on generalized complex geometry and supersymmetry},
     journal = {Archivum mathematicum},
     pages = {119--146},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322403},
     zbl = {1164.53342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a3/}
}
TY  - JOUR
AU  - Zabzine, Maxim
TI  - Lectures on generalized complex geometry and supersymmetry
JO  - Archivum mathematicum
PY  - 2006
SP  - 119
EP  - 146
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a3/
LA  - en
ID  - ARM_2006_42_5_a3
ER  - 
%0 Journal Article
%A Zabzine, Maxim
%T Lectures on generalized complex geometry and supersymmetry
%J Archivum mathematicum
%D 2006
%P 119-146
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a3/
%G en
%F ARM_2006_42_5_a3
Zabzine, Maxim. Lectures on generalized complex geometry and supersymmetry. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 119-146. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a3/

[1] Alekseev A., Strobl T.: Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. | MR

[2] Bonechi F., Zabzine M.: work in progress. | Zbl

[3] Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models. Lett. Math. Phys. 77 (2006), 291–308, arXiv:hep-th/0603130. | MR | Zbl

[4] Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. Lett. Math. Phys. 77 (2006), 53–62, arXiv:hep-th/0511179. | MR | Zbl

[5] A. Cannas da Silva A., Weinstein A.: Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes, AMS, Providence, 1999.

[6] Courant T., Weinstein A.: Beyond Poisson structures. In Action hamiltoniennes de groups. Troisième théorème de Lie (Lyon 1986), volume 27 of Travaux en Cours, 39–49, Hermann, Paris, 1988. | MR

[7] Courant T.: Dirac manifolds. Trans. Amer. Math. Soc. 319 (1990), 631–661. | MR | Zbl

[8] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248 (1984), 157. | MR

[9] Graña M.: Flux compactifications in string theory: A comprehensive review. Phys. Rept. 423 (2006), 91 [arXiv:hep-th/0509003]. | MR

[10] Gualtieri M.: Generalized complex geometry. Oxford University DPhil thesis, arXiv: math.DG/0401221. | Zbl

[11] Hitchin N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54 3 (2003), 281–308 [arXiv:math.DG/0209099]. | MR | Zbl

[12] Hitchin N.: Instantons, Poisson structures and generalized Kähler geometry. Comm. Math. Phys. 265 (2006), 131–164, arXiv:math.DG/0503432. | MR | Zbl

[13] Hitchin N.: Brackets, forms and invariant functionals. arXiv:math.DG/0508618. | MR | Zbl

[14] Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249. | MR | Zbl

[15] Li Y.: On deformations of generalized complex structures: The generalized Calabi-Yau case. arXiv:hep-th/0508030.

[16] Lindström U.: A brief review of supersymmetric non-linear sigma models and generalized complex geometry. arXiv:hep-th/0603240. | MR | Zbl

[17] Lindström U., Minasian R., Tomasiello A., Zabzine M.: Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257 (2005), 235 [arXiv:hep-th/0405085]. | MR | Zbl

[18] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry. Comm. Math. Phys. 269 (2007), 833–849, arXiv:hep-th/0512164. | MR | Zbl

[19] Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Differential Geom. 45 3 (1997), 547–574. | MR | Zbl

[20] Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B 548 (2002), 243 [arXiv:hep-th/0210043]. | MR | Zbl

[21] Mackenzie K. C. H.: General theory of Lie groupoids and Lie algebroids. Cambridge University Press, Cambridge, 2005. xxxviii+501 pp. | MR | Zbl

[22] Pestun V.: Topological strings in generalized complex space. arXiv:hep-th/0603145. | MR | Zbl

[23] Roytenberg D.: Courant algebroids, derived brackets and even symplectic supermanifolds. (PhD thesis), arXiv:math.DG/9910078. | MR

[24] Sussmann H.: Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973), 171. | MR | Zbl

[25] Yano K., Kon M.: Structures of manifolds. Series in Pure Mathematics, Vol.3 World Scientific, Singapore, 1984 Yano, K., Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965. | MR

[26] Zabzine M.: Hamiltonian perspective on generalized complex structure. Comm. Math. Phys. 263 (2006), 711 [arXiv:hep-th/0502137]. | MR | Zbl