@article{ARM_2006_42_5_a3,
author = {Zabzine, Maxim},
title = {Lectures on generalized complex geometry and supersymmetry},
journal = {Archivum mathematicum},
pages = {119--146},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322403},
zbl = {1164.53342},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a3/}
}
Zabzine, Maxim. Lectures on generalized complex geometry and supersymmetry. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 119-146. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a3/
[1] Alekseev A., Strobl T.: Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. | MR
[2] Bonechi F., Zabzine M.: work in progress. | Zbl
[3] Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models. Lett. Math. Phys. 77 (2006), 291–308, arXiv:hep-th/0603130. | MR | Zbl
[4] Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. Lett. Math. Phys. 77 (2006), 53–62, arXiv:hep-th/0511179. | MR | Zbl
[5] A. Cannas da Silva A., Weinstein A.: Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes, AMS, Providence, 1999.
[6] Courant T., Weinstein A.: Beyond Poisson structures. In Action hamiltoniennes de groups. Troisième théorème de Lie (Lyon 1986), volume 27 of Travaux en Cours, 39–49, Hermann, Paris, 1988. | MR
[7] Courant T.: Dirac manifolds. Trans. Amer. Math. Soc. 319 (1990), 631–661. | MR | Zbl
[8] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248 (1984), 157. | MR
[9] Graña M.: Flux compactifications in string theory: A comprehensive review. Phys. Rept. 423 (2006), 91 [arXiv:hep-th/0509003]. | MR
[10] Gualtieri M.: Generalized complex geometry. Oxford University DPhil thesis, arXiv: math.DG/0401221. | Zbl
[11] Hitchin N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54 3 (2003), 281–308 [arXiv:math.DG/0209099]. | MR | Zbl
[12] Hitchin N.: Instantons, Poisson structures and generalized Kähler geometry. Comm. Math. Phys. 265 (2006), 131–164, arXiv:math.DG/0503432. | MR | Zbl
[13] Hitchin N.: Brackets, forms and invariant functionals. arXiv:math.DG/0508618. | MR | Zbl
[14] Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249. | MR | Zbl
[15] Li Y.: On deformations of generalized complex structures: The generalized Calabi-Yau case. arXiv:hep-th/0508030.
[16] Lindström U.: A brief review of supersymmetric non-linear sigma models and generalized complex geometry. arXiv:hep-th/0603240. | MR | Zbl
[17] Lindström U., Minasian R., Tomasiello A., Zabzine M.: Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257 (2005), 235 [arXiv:hep-th/0405085]. | MR | Zbl
[18] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry. Comm. Math. Phys. 269 (2007), 833–849, arXiv:hep-th/0512164. | MR | Zbl
[19] Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Differential Geom. 45 3 (1997), 547–574. | MR | Zbl
[20] Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B 548 (2002), 243 [arXiv:hep-th/0210043]. | MR | Zbl
[21] Mackenzie K. C. H.: General theory of Lie groupoids and Lie algebroids. Cambridge University Press, Cambridge, 2005. xxxviii+501 pp. | MR | Zbl
[22] Pestun V.: Topological strings in generalized complex space. arXiv:hep-th/0603145. | MR | Zbl
[23] Roytenberg D.: Courant algebroids, derived brackets and even symplectic supermanifolds. (PhD thesis), arXiv:math.DG/9910078. | MR
[24] Sussmann H.: Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973), 171. | MR | Zbl
[25] Yano K., Kon M.: Structures of manifolds. Series in Pure Mathematics, Vol.3 World Scientific, Singapore, 1984 Yano, K., Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965. | MR
[26] Zabzine M.: Hamiltonian perspective on generalized complex structure. Comm. Math. Phys. 263 (2006), 711 [arXiv:hep-th/0502137]. | MR | Zbl