Keywords: Euler–Lagrange equations; Hamiltonian systems; Hamilton extremals; Dedecker–Hamilton extremals; Hamilton equations; Lepagean equivalents
@article{ARM_2006_42_5_a20,
author = {Smetanov\'a, Dana},
title = {On second order {Hamiltonian} systems},
journal = {Archivum mathematicum},
pages = {341--347},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322420},
zbl = {1164.35304},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a20/}
}
Smetanová, Dana. On second order Hamiltonian systems. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 341-347. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a20/
[1] Krupka D.: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1–65.
[2] Krupková O.: Hamiltonian field theory. J. Geom. Phys. 43 (2002), 93–132. | MR | Zbl
[3] Krupková O.: Hamiltonian field theory revisited: A geometric approach to regularity. in: Steps in Differential Geometry, Proc. of the Coll. on Differential Geometry, Debrecen 2000 (University of Debrecen, Debrecen, 2001), 187–207. | MR | Zbl
[4] Krupková O.: Higher-order Hamiltonian field theory. Paper in preparation.
[5] Saunders D. J.: The geometry of jets bundles. Cambridge University Press, Cambridge, 1989. | MR
[6] Shadwick W. F.: The Hamiltonian formulation of regular $r$-th order Lagrangian field theories. Lett. Math. Phys. 6 (1982), 409–416. | MR