Split octonions and generic rank two distributions in dimension five
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 329-339 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In his famous five variables paper Elie Cartan showed that one can canonically associate to a generic rank 2 distribution on a 5 dimensional manifold a Cartan geometry modeled on the homogeneous space $\tilde{G}_2/P$, where $P$ is one of the maximal parabolic subgroups of the exceptional Lie group $\tilde{G}_2$. In this article, we use the algebra of split octonions to give an explicit global description of the distribution corresponding to the homogeneous model.
In his famous five variables paper Elie Cartan showed that one can canonically associate to a generic rank 2 distribution on a 5 dimensional manifold a Cartan geometry modeled on the homogeneous space $\tilde{G}_2/P$, where $P$ is one of the maximal parabolic subgroups of the exceptional Lie group $\tilde{G}_2$. In this article, we use the algebra of split octonions to give an explicit global description of the distribution corresponding to the homogeneous model.
Classification : 53C30, 58A30
@article{ARM_2006_42_5_a19,
     author = {Sagerschnig, Katja},
     title = {Split octonions and generic rank two distributions in dimension five},
     journal = {Archivum mathematicum},
     pages = {329--339},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322419},
     zbl = {1164.53362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a19/}
}
TY  - JOUR
AU  - Sagerschnig, Katja
TI  - Split octonions and generic rank two distributions in dimension five
JO  - Archivum mathematicum
PY  - 2006
SP  - 329
EP  - 339
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a19/
LA  - en
ID  - ARM_2006_42_5_a19
ER  - 
%0 Journal Article
%A Sagerschnig, Katja
%T Split octonions and generic rank two distributions in dimension five
%J Archivum mathematicum
%D 2006
%P 329-339
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a19/
%G en
%F ARM_2006_42_5_a19
Sagerschnig, Katja. Split octonions and generic rank two distributions in dimension five. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 329-339. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a19/

[1] Baston R. J., Eastwood M. G.: The Penrose transform: its interaction with representation theory. Oxford Science Publications, Clarendon Press, 1989. | MR | Zbl

[2] Čap A.: Two constructions with parabolic geometries. Proceedings of the 25th Winter School on Geometry and Physics, Srní 2005, Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 11–38, preprint math.DG/0504389. | MR | Zbl

[3] Cartan E.: Les systèmes de Pfaff à cinque variables et les équations aux dérivées partielles du seconde ordre. Ann. Sci. Ècole Normale Sup. 27 (1910), 109–192. | MR

[4] Sagerschnig K.: Parabolic geometries determined by filtrations of the tangent bundle. to appear in Proceedings of the 25th Winter School on Geometry and Physics, Srni 2005, Rend. Circ. Mat. Palermo (2) Suppl. | MR | Zbl

[5] Springer T. A., Veldkamp F. D.: Octonions, Jordan Algebras and Exceptional Groups. Springer, Berlin, 2000. | MR | Zbl

[6] Yamaguchi K.: $G_2$-geometry of overdetermined systems of second order. Analysis and Geometry in Several Complex Variables (Katata, 1997),Trends Math. (1999), 289–314, Trends Math. (1999). | MR