@article{ARM_2006_42_5_a17,
author = {Lindstr\"om, Ulf},
title = {A brief review of supersymmetric non-linear sigma models and generalized complex geometry},
journal = {Archivum mathematicum},
pages = {307--318},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322417},
zbl = {1164.53400},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a17/}
}
Lindström, Ulf. A brief review of supersymmetric non-linear sigma models and generalized complex geometry. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 307-318. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a17/
[1] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. I. Comm. Math. Phys. 233, 403 (2003) [arXiv:hep-th/0111161]. | MR | Zbl
[2] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. II. Nuclear Phys. B 678, 295 (2004) [arXiv:hep-th/0202069]. | MR | Zbl
[3] Alekseev A., Strobl T.: Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. | MR
[4] Alvarez-Gaumé L., Freedman D. Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Comm. Math. Phys. 80, 443 (1981) | MR
[5] Bergamin L.: Generalized complex geometry and the Poisson sigma model. Modern Phys. Lett. A 20, 985 (2005) [arXiv:hep-th/0409283]. | MR | Zbl
[6] Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models. arXiv:hep-th/0603130. | MR | Zbl
[7] Bredthauer A., Lindström U., Persson J.: First-order supersymmetric sigma models and target space geometry. JHEP 0601, 144 (2006) [arXiv:hep-th/0508228]. | MR
[8] Buscher T., Lindström U., Roček M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B202, 94 (1988). | MR
[9] Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. arXiv:hep-th/0511179. | MR | Zbl
[10] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B248 (1984) 157.
[11] Grisaru M. T., Massar M., Sevrin A., Troost J.: The quantum geometry of $N = (2,2)$ non-linear sigma-models. Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218]. | MR
[12] Gualtieri M.: Generalized complex geometry. Oxford University DPhil thesis, [arXiv:math. DG/0401221]. | MR | Zbl
[13] Hitchin N.: Generalized Calabi-Yau manifolds. Quart. J. Math. 54, No. 3 (2003), 281–308, [arXiv:math.DG/0209099]. | MR | Zbl
[14] Hitchin N.: Instantons, Poisson structures and generalized Kähler geometry. [arXiv:math. DG/0503432]. | MR | Zbl
[15] Howe P. S., Sierra G.: Two-dimensional supersymmetric nonlinear sigma models with torsion. Phys. Lett. B148, 451 (1984). | MR
[16] Howe P. S., Lindström U., Wulff L.: Superstrings with boundary fermions. JHEP 0508, 041 (2005) [arXiv:hep-th/0505067]. | MR
[17] Howe P. S., Lindström U., Stojevic V.: Special holonomy sigma models with boundaries. JHEP 0601, 159 (2006) [arXiv:hep-th/0507035]. | MR
[18] Ivanov I. T., Kim B. B., Roček M.: Complex structures, duality and WZW models in extended superspace. Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063]. | MR
[19] Kapustin A.: Topological strings on noncommutative manifolds. Int. J. Geom. Methods Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057]. | MR | Zbl
[20] Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249. | MR | Zbl
[21] Lindström U., Rocek M., van Nieuwenhuizen P.: Consistent boundary conditions for open strings. Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266]. | MR | Zbl
[22] Lindström U., Zabzine M.: N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models. JHEP 0302, 006 (2003) [arXiv:hep-th/0209098]. | MR
[23] Lindström U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models. Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100]. | MR
[24] Lindström U., Minasian R., Tomasiello A., Zabzine M.: Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085]. | MR | Zbl
[25] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler geometry and manifest $N = (2,2)$ supersymmetric nonlinear sigma-models. JHEP 0507 (2005) 067 [arXiv:hep-th/0411186]. | MR
[26] Lindström U., Rocek M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry. arXiv:hep-th/0512164. | Zbl
[27] Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043]. | MR | Zbl
[28] Pestun V.: Topological strings in generalized complex space. arXiv:hep-th/0603145. | MR | Zbl
[29] Sevrin A., Troost J.: Off-shell formulation of $N = 2$ non-linear sigma-models. Nuclear Phys. B492 (1997) 623 [arXiv:hep-th/9610102]. | MR
[30] Zabzine M.: Hamiltonian perspective on generalized complex structure. arXiv:hep-th/0502137, to appear in Comm. Math. Phys. | MR | Zbl
[31] Zucchini R.: A sigma model field theoretic realization of Hitchin’s generalized complex geometry. JHEP 0411 (2004) 045 [arXiv:hep-th/0409181]. | MR
[32] Zumino B.: Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979).