A brief review of supersymmetric non-linear sigma models and generalized complex geometry
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 307-318 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation.
This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation.
Classification : 53C25, 53C80, 81T60
@article{ARM_2006_42_5_a17,
     author = {Lindstr\"om, Ulf},
     title = {A brief review of supersymmetric non-linear sigma models and generalized complex geometry},
     journal = {Archivum mathematicum},
     pages = {307--318},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322417},
     zbl = {1164.53400},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a17/}
}
TY  - JOUR
AU  - Lindström, Ulf
TI  - A brief review of supersymmetric non-linear sigma models and generalized complex geometry
JO  - Archivum mathematicum
PY  - 2006
SP  - 307
EP  - 318
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a17/
LA  - en
ID  - ARM_2006_42_5_a17
ER  - 
%0 Journal Article
%A Lindström, Ulf
%T A brief review of supersymmetric non-linear sigma models and generalized complex geometry
%J Archivum mathematicum
%D 2006
%P 307-318
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a17/
%G en
%F ARM_2006_42_5_a17
Lindström, Ulf. A brief review of supersymmetric non-linear sigma models and generalized complex geometry. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 307-318. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a17/

[1] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. I. Comm. Math. Phys. 233, 403 (2003) [arXiv:hep-th/0111161]. | MR | Zbl

[2] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. II. Nuclear Phys. B 678, 295 (2004) [arXiv:hep-th/0202069]. | MR | Zbl

[3] Alekseev A., Strobl T.: Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. | MR

[4] Alvarez-Gaumé L., Freedman D. Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Comm. Math. Phys. 80, 443 (1981) | MR

[5] Bergamin L.: Generalized complex geometry and the Poisson sigma model. Modern Phys. Lett. A 20, 985 (2005) [arXiv:hep-th/0409283]. | MR | Zbl

[6] Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models. arXiv:hep-th/0603130. | MR | Zbl

[7] Bredthauer A., Lindström U., Persson J.: First-order supersymmetric sigma models and target space geometry. JHEP 0601, 144 (2006) [arXiv:hep-th/0508228]. | MR

[8] Buscher T., Lindström U., Roček M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B202, 94 (1988). | MR

[9] Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. arXiv:hep-th/0511179. | MR | Zbl

[10] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B248 (1984) 157.

[11] Grisaru M. T., Massar M., Sevrin A., Troost J.: The quantum geometry of $N = (2,2)$ non-linear sigma-models. Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218]. | MR

[12] Gualtieri M.: Generalized complex geometry. Oxford University DPhil thesis, [arXiv:math. DG/0401221]. | MR | Zbl

[13] Hitchin N.: Generalized Calabi-Yau manifolds. Quart. J. Math. 54, No. 3 (2003), 281–308, [arXiv:math.DG/0209099]. | MR | Zbl

[14] Hitchin N.: Instantons, Poisson structures and generalized Kähler geometry. [arXiv:math. DG/0503432]. | MR | Zbl

[15] Howe P. S., Sierra G.: Two-dimensional supersymmetric nonlinear sigma models with torsion. Phys. Lett. B148, 451 (1984). | MR

[16] Howe P. S., Lindström U., Wulff L.: Superstrings with boundary fermions. JHEP 0508, 041 (2005) [arXiv:hep-th/0505067]. | MR

[17] Howe P. S., Lindström U., Stojevic V.: Special holonomy sigma models with boundaries. JHEP 0601, 159 (2006) [arXiv:hep-th/0507035]. | MR

[18] Ivanov I. T., Kim B. B., Roček M.: Complex structures, duality and WZW models in extended superspace. Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063]. | MR

[19] Kapustin A.: Topological strings on noncommutative manifolds. Int. J. Geom. Methods Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057]. | MR | Zbl

[20] Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249. | MR | Zbl

[21] Lindström U., Rocek M., van Nieuwenhuizen P.: Consistent boundary conditions for open strings. Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266]. | MR | Zbl

[22] Lindström U., Zabzine M.: N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models. JHEP 0302, 006 (2003) [arXiv:hep-th/0209098]. | MR

[23] Lindström U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models. Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100]. | MR

[24] Lindström U., Minasian R., Tomasiello A., Zabzine M.: Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085]. | MR | Zbl

[25] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler geometry and manifest $N = (2,2)$ supersymmetric nonlinear sigma-models. JHEP 0507 (2005) 067 [arXiv:hep-th/0411186]. | MR

[26] Lindström U., Rocek M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry. arXiv:hep-th/0512164. | Zbl

[27] Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043]. | MR | Zbl

[28] Pestun V.: Topological strings in generalized complex space. arXiv:hep-th/0603145. | MR | Zbl

[29] Sevrin A., Troost J.: Off-shell formulation of $N = 2$ non-linear sigma-models. Nuclear Phys. B492 (1997) 623 [arXiv:hep-th/9610102]. | MR

[30] Zabzine M.: Hamiltonian perspective on generalized complex structure. arXiv:hep-th/0502137, to appear in Comm. Math. Phys. | MR | Zbl

[31] Zucchini R.: A sigma model field theoretic realization of Hitchin’s generalized complex geometry. JHEP 0411 (2004) 045 [arXiv:hep-th/0409181]. | MR

[32] Zumino B.: Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979).