@article{ARM_2006_42_5_a16,
author = {L\'avi\v{c}ka, Roman},
title = {Finely differentiable monogenic functions},
journal = {Archivum mathematicum},
pages = {301--305},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322416},
zbl = {1164.30402},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a16/}
}
Lávička, Roman. Finely differentiable monogenic functions. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 301-305. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a16/
[1] Armitage D. H., Gardiner S. J.: Classical Potential Theory. Springer, London, 2001. | MR | Zbl
[2] Borel É.: Leçons sur les fonctions monogènes uniformes d’une variable complexe. Gauthier Villars, Paris, 1917.
[3] Fuglede B.: Finely Harmonic Functions. Lecture Notes in Math. 289, Springer, Berlin, 1972. | MR | Zbl
[4] Fuglede B.: Fine topology and finely holomorphic functions. In: Proc. 18th Scandinavian Congr. Math., Aarhus, 1980, Birkhäuser, Boston, 1981, 22–38. | MR
[5] Fuglede B.: Sur les fonctions finement holomorphes. Ann. Inst. Fourier, Grenoble 31 (4) (1981), 57–88. | MR | Zbl
[6] Fuglede B.: Fonctions BLD et fonctions finement surharmoniques. In: Séminaire de Théorie du Potentiel, Paris, No. 6, Lecture Notes in Math. 906, Springer, Berlin, 1982, 126–157. | MR | Zbl
[7] Fuglede B.: Fonctions finement holomorphes de plusieurs variables - un essai. Lecture Notes in Math. 1198, Springer, Berlin, 1986, 133–145. | MR | Zbl
[8] Fuglede B.: Finely Holomorphic Functions. A Survey, Rev. Roumaine Math. Pures Appl. 33 (4) (1988), 283–295. | MR | Zbl
[9] Gilbert J. E., Murray M. A. M.: Clifford algebras and Dirac operators in harmonic analysis. Cambridge studies in advanced mathematics, vol. 26, Cambridge, 1991. | MR | Zbl
[10] Kilpeläinen T., Malý J.: Supersolutions to degenerate elliptic equations on quasi open sets. Commun. Partial Differential Equations 17 (3&4) (1992), 371–405. | MR
[11] Lávička R.: A generalisation of Fueter’s monogenic functions to fine domains. to appear in Rend. Circ. Mat. Palermo (2) Suppl. | MR
[12] Lávička R.: A generalisation of monogenic functions to fine domains. preprint. | MR
[13] Lávička R.: Finely continuously differentiable functions. preprint. | MR | Zbl
[14] Lyons T.: Finely harmonic functions need not be quasi-analytic. Bull. London Math. Soc. 16 (1984), 413–415. | MR | Zbl