Finely differentiable monogenic functions
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 301-305 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in (Lávička, R., A generalisation of monogenic functions to fine domains, preprint.) like a higher dimensional analogue of finely holomorphic functions.
Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in (Lávička, R., A generalisation of monogenic functions to fine domains, preprint.) like a higher dimensional analogue of finely holomorphic functions.
Classification : 30G35, 31C40
@article{ARM_2006_42_5_a16,
     author = {L\'avi\v{c}ka, Roman},
     title = {Finely differentiable monogenic functions},
     journal = {Archivum mathematicum},
     pages = {301--305},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322416},
     zbl = {1164.30402},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a16/}
}
TY  - JOUR
AU  - Lávička, Roman
TI  - Finely differentiable monogenic functions
JO  - Archivum mathematicum
PY  - 2006
SP  - 301
EP  - 305
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a16/
LA  - en
ID  - ARM_2006_42_5_a16
ER  - 
%0 Journal Article
%A Lávička, Roman
%T Finely differentiable monogenic functions
%J Archivum mathematicum
%D 2006
%P 301-305
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a16/
%G en
%F ARM_2006_42_5_a16
Lávička, Roman. Finely differentiable monogenic functions. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 301-305. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a16/

[1] Armitage D. H., Gardiner S. J.: Classical Potential Theory. Springer, London, 2001. | MR | Zbl

[2] Borel É.: Leçons sur les fonctions monogènes uniformes d’une variable complexe. Gauthier Villars, Paris, 1917.

[3] Fuglede B.: Finely Harmonic Functions. Lecture Notes in Math. 289, Springer, Berlin, 1972. | MR | Zbl

[4] Fuglede B.: Fine topology and finely holomorphic functions. In: Proc. 18th Scandinavian Congr. Math., Aarhus, 1980, Birkhäuser, Boston, 1981, 22–38. | MR

[5] Fuglede B.: Sur les fonctions finement holomorphes. Ann. Inst. Fourier, Grenoble 31 (4) (1981), 57–88. | MR | Zbl

[6] Fuglede B.: Fonctions BLD et fonctions finement surharmoniques. In: Séminaire de Théorie du Potentiel, Paris, No. 6, Lecture Notes in Math. 906, Springer, Berlin, 1982, 126–157. | MR | Zbl

[7] Fuglede B.: Fonctions finement holomorphes de plusieurs variables - un essai. Lecture Notes in Math. 1198, Springer, Berlin, 1986, 133–145. | MR | Zbl

[8] Fuglede B.: Finely Holomorphic Functions. A Survey, Rev. Roumaine Math. Pures Appl. 33 (4) (1988), 283–295. | MR | Zbl

[9] Gilbert J. E., Murray M. A. M.: Clifford algebras and Dirac operators in harmonic analysis. Cambridge studies in advanced mathematics, vol. 26, Cambridge, 1991. | MR | Zbl

[10] Kilpeläinen T., Malý J.: Supersolutions to degenerate elliptic equations on quasi open sets. Commun. Partial Differential Equations 17 (3&4) (1992), 371–405. | MR

[11] Lávička R.: A generalisation of Fueter’s monogenic functions to fine domains. to appear in Rend. Circ. Mat. Palermo (2) Suppl. | MR

[12] Lávička R.: A generalisation of monogenic functions to fine domains. preprint. | MR

[13] Lávička R.: Finely continuously differentiable functions. preprint. | MR | Zbl

[14] Lyons T.: Finely harmonic functions need not be quasi-analytic. Bull. London Math. Soc. 16 (1984), 413–415. | MR | Zbl