On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 291-299 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that these spaces $A_n$ do not admit nontrivial holomorphically projective mappings onto $\bar{K}_n$. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that these spaces $A_n$ do not admit nontrivial holomorphically projective mappings onto $\bar{K}_n$. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
Classification : 53B20, 53B30, 53B35
@article{ARM_2006_42_5_a15,
     author = {al Lami, Raad J. K. and \v{S}kodov\'a, Marie and Mike\v{s}, Josef},
     title = {On holomorphically projective mappings from equiaffine generally recurrent spaces onto {K\"ahlerian} spaces},
     journal = {Archivum mathematicum},
     pages = {291--299},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322415},
     zbl = {1164.53317},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a15/}
}
TY  - JOUR
AU  - al Lami, Raad J. K.
AU  - Škodová, Marie
AU  - Mikeš, Josef
TI  - On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces
JO  - Archivum mathematicum
PY  - 2006
SP  - 291
EP  - 299
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a15/
LA  - en
ID  - ARM_2006_42_5_a15
ER  - 
%0 Journal Article
%A al Lami, Raad J. K.
%A Škodová, Marie
%A Mikeš, Josef
%T On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces
%J Archivum mathematicum
%D 2006
%P 291-299
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a15/
%G en
%F ARM_2006_42_5_a15
al Lami, Raad J. K.; Škodová, Marie; Mikeš, Josef. On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 291-299. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a15/

[1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian manifolds of conullity two. World Sci. 1996. | MR | Zbl

[2] Domashev V. V., Mikeš J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163; translation from Mat. Zametki, 23 2 (1978), 297–304. | MR | Zbl

[3] Eisenhart L. P.: Non-Riemannian Geometry. Princenton Univ. Press. 1927, Colloquium Publ. Vol. 8., AMS, Providence, 2003. | MR

[4] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. | MR | Zbl

[5] Kaygorodov V. R.: On Riemannian spaces $D_n^m$. Itogi Nauki i Tekhniki,Tr. Geom. Sem. Vol. 5, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1974, 359–373.

[6] Kaygorodov V. R.: Structure of curvature of space-time. Itogi Nauki i Tekhniki, Problemy Geometrii, Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1983, 177–204. | MR

[7] Lakomá L., Jukl M.: The decomposition of tensor spaces with almost complex structure. Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 145–150. | MR | Zbl

[8] Mikeš J.: On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb., Kharkov, 23 (1980), 90–98. | Zbl

[9] Mikeš J.: On geodesic mappings of $m$-symmetric and generally semi-symmetric spaces. Russ. Math. 36 8 (1992), 38–42; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 8 (363) (1992), 42–46. | MR | Zbl

[10] Mikeš J.: Geodesic mappings onto semisymmetric spaces. Russ. Math. 38 2 (1994), 35–41; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 2 (381) (1994), 37–43. | MR | Zbl

[11] Mikeš J.: On special F-planar mappings of affine-connected spaces. Vestn. Moskov. Univ. 3 (1994), 18–24. | MR

[12] Mikeš J.: On the general trace decomposition problem. Differential Geom. Appl. Proc. Conf. Aug. 28 – Sept. 1, Brno, 1995, Czech Republic, Masaryk Univ., Brno 1996, 45–50. | MR

[13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. (New York) 78 3 (1996), 311–333. | MR | Zbl

[14] Mikeš J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89 3 (1998), 1334–1353. | MR | Zbl

[15] Mikeš J., Pokorná O.: On holomorphically projective mappings onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. | MR | Zbl

[16] Mikeš J., Radulović Ž., Haddad M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces. Russ. Math. 40 10 (1996), 28–32; Izv. Vyssh. Uchebn. Mat. 10 (413) (1996), 30–35. | MR | Zbl

[17] Mikeš J., Rachůnek L.: $T$-semisymmetric spaces and concircular vector fields. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 187–193. | MR

[18] Mikeš J., Sinyukov N. S.: On quasiplanar mappings of spaces of affine connection. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1(248) (1983), 55–61; (English) Sov. Math. 27 1 (1983), 63–70. | MR | Zbl

[19] Otsuki T., Tashiro Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. | MR | Zbl

[20] Petrov A. Z.: New method in general relativity theory. Moscow, Nauka, 1966, 495p.

[21] Sakaguchi T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure. Hokkaido Math. J. 3 (1974), 203–212. | MR | Zbl

[22] Shirokov P. A.: Selected Work in Geometry. Kazan State Univ. Press, Kazan, 1966.

[23] Sinyukov N. S.: Geodesic mappings of Riemannian spaces. Moscow, Nauka, 1979, 256p. | MR | Zbl

[24] Škodová M., Mikeš J., Pokorná O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. | MR | Zbl

[25] Sobchuk V. S., Mikeš J., Pokorná O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces. Novi Sad J. Math. 29 3 (1999), 309–312. | MR | Zbl

[26] Yano K.: Concircular geometry. I-IV. Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511.

[27] Yano K.: Differential geometry on complex and almost complex spaces. Oxford-London-New York-Paris-Frankfurt, Pergamon Press 1965, XII, 323p. | MR | Zbl