Symplectic spinor valued forms and invariant operators acting between them
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 279-290 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.
Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.
Classification : 53C27, 53D05, 58J60
@article{ARM_2006_42_5_a14,
     author = {Kr\'ysl, Svatopluk},
     title = {Symplectic spinor valued forms and invariant operators acting between them},
     journal = {Archivum mathematicum},
     pages = {279--290},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322414},
     zbl = {1164.58320},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a14/}
}
TY  - JOUR
AU  - Krýsl, Svatopluk
TI  - Symplectic spinor valued forms and invariant operators acting between them
JO  - Archivum mathematicum
PY  - 2006
SP  - 279
EP  - 290
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a14/
LA  - en
ID  - ARM_2006_42_5_a14
ER  - 
%0 Journal Article
%A Krýsl, Svatopluk
%T Symplectic spinor valued forms and invariant operators acting between them
%J Archivum mathematicum
%D 2006
%P 279-290
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a14/
%G en
%F ARM_2006_42_5_a14
Krýsl, Svatopluk. Symplectic spinor valued forms and invariant operators acting between them. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 279-290. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a14/

[1] Baldoni W.: General Representation theory of real reductive Lie groups in Bailey, T. N.: Representation Theory and Automorphic Forms. Edinburgh (1996), 61–72. | MR

[2] Britten D. J., Hooper J., Lemire F. W.: Simple $C_n$-modules with multiplicities 1 and application. Canad. J. Phys. 72 (1994), 326–335. | MR

[3] Britten D. J., Lemire F. W.: On modules of bounded multiplicities for the symplectic algebra. Trans. Amer. Math. Soc. 351, No. 8 (1999), 3413–3431. | MR

[4] Delanghe R., Sommen F., Souèek V.: Clifford Algebra and Spinor-valued Functions. Math. Appl., Vol. 53, 1992.

[5] Goodman R., Wallach N.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge, 2003. | Zbl

[6] Green M. B., Hull C. M.: Covariant quantum mechanics of the superstring. Phys. Lett. B 225 (1989), 57–65. | MR

[7] Habermann K.: Symplectic Dirac Operators on Kähler Manifolds. Math. Nachr. 211 (2000), 37–62. | MR

[8] Humphreys J. E.: Finite and infinite dimensional modules for semisimple Lie algebras, Lie theories and their applications. Lie Theor. Appl., Proc. Ann. Semin. Can. Math. Congr., Kingston 1977 (1978), 1–64. | MR

[9] Kac V. G., Wakimoto M.: Modular invariant representations of infinite dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, No. 14 (1988), 4956–4960. | MR | Zbl

[10] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry. Ph.D. thesis, Charles University Prague, Prague, 2001.

[11] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials. Invent. Math. 44, No. 1 (1978), 1–49. | MR

[12] Klein A.: Eine Fouriertransformation für symplektische Spinoren und Anwendungen in der Quantisierung. Diploma Thesis, Technische Universität Berlin, Berlin, 2000.

[13] Kostant B.: On the Tensor Product of a Finite and an Infinite Dimensional Representations. J. Funct. Anal. 20 (1975), 257–285. | MR

[14] Kostant B.: Symplectic Spinors. Sympos. Math. XIV (1974), 139–152. | MR | Zbl

[15] Krýsl S.: Invariant differential operators for contact projective geometries. Ph.D. thesis, Charles University Prague, Prague, 2004.

[16] Krýsl S.: Decomposition of the tensor product of the defining representation and a higher symplectic spinor module over $\mathfrak{sp}(2n,\mathbb{C})$. to appear in J. Lie Theory 17, No. 1 (2007), 63–72. | MR

[17] Reuter M.: Symplectic Dirac-Kähler Fields. J. Math. Phys. 40 (1999), 5593–5640; electronically available at hep-th/9910085. | MR | Zbl