Singular BGG sequences for the even orthogonal case
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 267-278 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Locally exact complexes of invariant differential operators are constructed on the homogeneous model for a parabolic geometry for the even orthogonal group. The tool used for the construction is the Penrose transform developed by R. Baston and M. Eastwood. Complexes constructed here belong to the singular infinitesimal character.
Locally exact complexes of invariant differential operators are constructed on the homogeneous model for a parabolic geometry for the even orthogonal group. The tool used for the construction is the Penrose transform developed by R. Baston and M. Eastwood. Complexes constructed here belong to the singular infinitesimal character.
Classification : 22Exx, 58Jxx
@article{ARM_2006_42_5_a13,
     author = {Krump, Luk\'a\v{s} and Sou\v{c}ek, Vladim{\'\i}r},
     title = {Singular {BGG} sequences for the even orthogonal case},
     journal = {Archivum mathematicum},
     pages = {267--278},
     year = {2006},
     volume = {42},
     number = {5},
     mrnumber = {2322413},
     zbl = {1164.58317},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a13/}
}
TY  - JOUR
AU  - Krump, Lukáš
AU  - Souček, Vladimír
TI  - Singular BGG sequences for the even orthogonal case
JO  - Archivum mathematicum
PY  - 2006
SP  - 267
EP  - 278
VL  - 42
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a13/
LA  - en
ID  - ARM_2006_42_5_a13
ER  - 
%0 Journal Article
%A Krump, Lukáš
%A Souček, Vladimír
%T Singular BGG sequences for the even orthogonal case
%J Archivum mathematicum
%D 2006
%P 267-278
%V 42
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a13/
%G en
%F ARM_2006_42_5_a13
Krump, Lukáš; Souček, Vladimír. Singular BGG sequences for the even orthogonal case. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 267-278. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a13/

[1] Baston R.: Quaternionic complexes. J. Geom. Phys. 8 (1992), 29–52. | MR | Zbl

[2] Baston R. J., Eastwood M. G.: Penrose transform; Its interaction with representation theory. Clarendon Press, Oxford, 1989. | MR | Zbl

[3] Calderbank D. M. J., Diemer T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine angew. Math. 537 (2001), 67–103. | MR | Zbl

[4] Čap A.: Two constructions with parabolic geometries. preprint, arXiv:math.DG/0504389 | MR | Zbl

[5] Čap A., Schichl H.: Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29 3 (2000), 453–505. | MR | Zbl

[6] Čap A., Slovák J., Souček V.: Bernstein-Gelfand-Gelfand sequences. Ann. of Math. (2) 154 1 (2001), 97–113. | MR

[7] Colombo F., Sabadini A., Sommen F., Struppa D.: Analysis of Dirac systems and computational algebra. Birkhäuser, Basel, 2004. | MR | Zbl

[8] Franek P.: Generalized Verma module homomorphisms in singular character. submitted to Proc. of the Winter School ’Geometry and Physics’, Srni, 2006. | MR | Zbl

[9] Krump L.: Construction of BGG sequences for AHS structures. Comment. Math. Univ. Carolin. 42 1 (2001), 31–52, | MR | Zbl

[10] Krump L., Souček V.: Hasse diagrams for parabolic geometries. Proc. of ’The 22nd Winter School ’Geometry and Physics’, Srní 2002, Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003). | MR | Zbl

[11] Nacinovich M.: Complex analysis and complexes of differential operators. LNM 950, Springer-Verlag, Berlin, 1980. | MR

[12] Sharpe R. W.: Differential geometry. Grad. Texts in Math. 166 (1997). | MR | Zbl

[13] Slovák J.: Parabolic geometries. Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.

[14] Šmíd D.: The BGG diagram for contact orthogonal geometry of even dimension. Acta Univ. Carolin. Math. Phys. 45 (2004), 79–96. | MR | Zbl