@article{ARM_2006_42_5_a12,
author = {Kol\'a\v{r}, Martin},
title = {The local equivalence problem in {CR} geometry},
journal = {Archivum mathematicum},
pages = {253--266},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322412},
zbl = {1164.32307},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a12/}
}
Kolář, Martin. The local equivalence problem in CR geometry. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 253-266. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a12/
[BER] Baouendi M. S., Ebenfelt P., Rothschild L. P.: Convergence and finite determination of formal CR mappings. J. Amer. Math. Soc. 13 (2000), 697–723. | MR | Zbl
[BER2] Baouendi M. S., Ebenfelt P., Rothschild L. P.: Local geometric properties of real submanifolds in complex space. Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. | MR
[BB] Barletta E., Bedford E.: Existence of proper mappings from domains in $\mathbb{C}^2$ . Indiana Univ. Math. J. 2 (1990), 315–338. | MR
[BFG] Beals M., Fefferman C., Grossman R.: Strictly pseudoconvex domains in $\mathbb{C}^n$. Bull. Amer. Math. Soc. 8 (1983), 125–322. | MR
[B] Beloshapka V. K.: On the dimension of the group of automorphisms of an analytic hypersurface. Math. USSR, Izv. 14 (1980), 223–245. | MR | Zbl
[BE] Beloshapka V. K., Ezhov V. V.: Normal forms and model hypersurfaces in $\mathbb{C}^2$. preprint.
[C1] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. Ann. Math. Pura Appl. 11 (1932), 17–90.
[C2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II. Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. | MR
[CM] Chern S. S., Moser J.: Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271. | MR
[D] D’Angelo J. P.: Orders od contact, real hypersurfaces and applications. Ann. of Math. (2) 115 (1982), 615–637. | MR
[E] Ebenfelt P.: New invariant tensors in CR structures and a normal form for real hypersurfaces at a generic Levi degeneracy. J. Differential Geom. 50 (1998), 207–247. | MR | Zbl
[ELZ] Ebenfelt P., Lamel B., Zaitsev D.: Degenerate real hypersurfaces in $\mathbb{C}2$ with few automorphisms. arXiv:math.CV/0605540.
[EHZ] Ebenfelt P., Huang X., Zaitsev D.: The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics. Amer. J. Math. 127 (2005), 169–191. | MR
[F] Fefferman C.: Parabolic invariant theory in complex analysis. Adv. Math. 31 (1979), 131–262. | MR | Zbl
[IK] Isaev A. V., Krantz S. G.: Domains with non-compact automorphism group: a survey. Adv. Math. 146 (1) (1999), 1–38. | MR | Zbl
[J] Jacobowitz H.: An introduction to CR structures. Math. Surveys Monogr. 32, AMS 1990. | MR | Zbl
[Ju] Juhlin R.: PhD-thesis, UCSD | Zbl
[K] Kohn J. J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542. | MR
[Ko1] Kolář M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$. Math. Res. Lett. 12 (2005), 523–542. | MR
[Ko2] Kolář M.: Local symmetries of finite type hypersurfaces in $\mathbb{C}^2$. Sci. China A 48 (2006), 1633–1641. | MR
[Kow] Kowalski R.: A hypersurface in $\mathbb{C}^2$ whose stability group is not determined by 2-jets. Proc. Amer. Math. Soc. 130 (12) (2002), 3679–3686. (electronic) | MR
[KL] Kruzhilin N. G., Loboda A. V.: Linearization of local automorphisms of pseudoconvex surfaces. Dokl. Akad. Nauk SSSR 271 (1983), 280–282. | MR | Zbl
[Po] Poincaré H.: Les fonctions analytique de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo 23 (1907), 185–220.
[S] Segre B.: Intorno al problem di Poincaré della rappresentazione pseudo-conform. Rend. Accad. Lincei 13 (1931), 676–683.
[St] Stanton N.: A normal form for rigid hypersurfaces in $\mathbb{C}^2$ . Amer. J. Math. 113 (1991), 877–910. | MR
[V] Vitushkin A. G.: Real analytic hypersurfaces in complex manifolds. Russ. Math. Surv. 40 (1985), 1–35. | MR | Zbl
[W] Webster S. M.: On the Moser normal form at a non-umbilic point. Math. Ann. 233 (1978), 97–102. | MR | Zbl
[We] Wells R. O., Jr.: The Cauchy-Riemann equations and differential geometry. Bull. Amer. Math. Soc. (N.S.) 6 (2) (1982), 187–199. | MR | Zbl
[Wo] Wong P.: A construction of normal forms for weakly pseudoconvex CR manifolds in $\mathbb{C}^2$. Invent. Math. 69 (1982), 311–329. | MR
[Z] Zaitsev D.: Unique determination of local CR-maps by their jets: A survey. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Suppl. 13 (2002), 295–305. | MR | Zbl