A gravitational effective action on a finite triangulation as a discrete model of continuous concepts
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 245-251
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We recall how the Gauss-Bonnet theorem can be interpreted as a finite dimensional index theorem. We describe the construction given in hep-th/0512293 of a function that can be interpreted as a gravitational effective action on a triangulation. The variation of this function under local rescalings of the edge lengths sharing a vertex is the Euler density, and we use it to illustrate how continuous concepts can have natural discrete analogs.
We recall how the Gauss-Bonnet theorem can be interpreted as a finite dimensional index theorem. We describe the construction given in hep-th/0512293 of a function that can be interpreted as a gravitational effective action on a triangulation. The variation of this function under local rescalings of the edge lengths sharing a vertex is the Euler density, and we use it to illustrate how continuous concepts can have natural discrete analogs.
@article{ARM_2006_42_5_a11,
author = {Ko, Albert and Ro\v{c}ek, Martin},
title = {A gravitational effective action on a finite triangulation as a discrete model of continuous concepts},
journal = {Archivum mathematicum},
pages = {245--251},
year = {2006},
volume = {42},
number = {5},
mrnumber = {2322411},
zbl = {1164.83300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a11/}
}
TY - JOUR AU - Ko, Albert AU - Roček, Martin TI - A gravitational effective action on a finite triangulation as a discrete model of continuous concepts JO - Archivum mathematicum PY - 2006 SP - 245 EP - 251 VL - 42 IS - 5 UR - http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a11/ LA - en ID - ARM_2006_42_5_a11 ER -
Ko, Albert; Roček, Martin. A gravitational effective action on a finite triangulation as a discrete model of continuous concepts. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 245-251. http://geodesic.mathdoc.fr/item/ARM_2006_42_5_a11/
[1] T. Regge: General Relativity Without Coordinates. Nuovo Cim. 19, 558 (1961). | MR
[2] A. M. Polyakov: Quantum Geometry Of Bosonic Strings. Phys. Lett. B 103, 207 (1981). | MR
[3] D. M. Capper, M. J. Duff: Trace Anomalies In Dimensional Regularization. Nuovo Cim. A 23, 173 (1974); M. J. Duff, Observations On Conformal Anomalies, Nucl. Phys. B 125, 334 (1977).
[4] S. Wilson: Geometric Structures on the Cochains of a Manifold. (2005). [math.GT/0505227]
[5] A. Ko, M. Roček: A gravitational effective action on a finite triangulation. JHEP 0603, 021 (2006) [arXiv:hep-th/0512293]. | MR
[6] Luboš Motl: private communication.