Natural weak factorization systems
Archivum mathematicum, Tome 42 (2006) no. 4, pp. 397-408
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category $\mathcal {K}$ is introduced, as a pair (comonad, monad) over $\mathcal {K}^{\bf 2}$. The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories.
In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category $\mathcal {K}$ is introduced, as a pair (comonad, monad) over $\mathcal {K}^{\bf 2}$. The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories.
Classification : 18C15
@article{ARM_2006_42_4_a4,
     author = {Grandis, Marco and Tholen, Walter},
     title = {Natural weak factorization systems},
     journal = {Archivum mathematicum},
     pages = {397--408},
     year = {2006},
     volume = {42},
     number = {4},
     mrnumber = {2283020},
     zbl = {1164.18300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a4/}
}
TY  - JOUR
AU  - Grandis, Marco
AU  - Tholen, Walter
TI  - Natural weak factorization systems
JO  - Archivum mathematicum
PY  - 2006
SP  - 397
EP  - 408
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a4/
LA  - en
ID  - ARM_2006_42_4_a4
ER  - 
%0 Journal Article
%A Grandis, Marco
%A Tholen, Walter
%T Natural weak factorization systems
%J Archivum mathematicum
%D 2006
%P 397-408
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a4/
%G en
%F ARM_2006_42_4_a4
Grandis, Marco; Tholen, Walter. Natural weak factorization systems. Archivum mathematicum, Tome 42 (2006) no. 4, pp. 397-408. http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a4/

[1] Adámek J., Herrlich H., Rosický J., Tholen W.: Weak factorization systems and topological functors. Appl. Categorical Structures 10 (2002), 237–249. | MR | Zbl

[2] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories. Wiley (New York 1990). | MR

[3] Carboni A., Janelidze G.: Decidable (= separable) objects and morphisms in lextensive categories. J. Pure Appl. Algebra 110 (1996), 219–240. | MR | Zbl

[4] Coppey L.: Algèbres de decompositions et précatégories. Diagrammes 4 (Suppl.) (1980). | MR | Zbl

[5] Grandis M., Paré R.: Limits in double categories. Cah. Topol. Géom. Différ. Catég. 40 (1999), 162–220. | MR | Zbl

[6] Gray J. W.: Formal category theory: adjointness for 2-categories. Lecture Notes in Math. Vol. 391, Springer-Verlag (Berlin 1974). | MR | Zbl

[7] Korostenski M., Tholen W.: Factorization systems as Eilenberg–Moore algebras. J. Pure Appl. Algebra 85 (1993), 57–72. | MR | Zbl

[8] Rosický J., Tholen W.: Lax factorization algebras. J. Pure Appl. Algebra 175 (2002), 355–382. | MR | Zbl

[9] Rosický J., Tholen W.: Factorization, fibration and torsion. preprint (York University 2006). | MR | Zbl

[10] Rosebrugh R., Wood R. J.: Coherence for factorization algebras. Theory Appl. Categories 10 (2002), 134–147. | MR | Zbl