On universality of semigroup varieties
Archivum mathematicum, Tome 42 (2006) no. 4, pp. 357-386 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A category $K$ is called $\alpha $-determined if every set of non-isomorphic $K$-objects such that their endomorphism monoids are isomorphic has a cardinality less than $\alpha $. A quasivariety $Q$ is called $Q$-universal if the lattice of all subquasivarieties of any quasivariety of finite type is a homomorphic image of a sublattice of the lattice of all subquasivarieties of $Q$. We say that a variety $V$ is var-relatively alg-universal if there exists a proper subvariety $W$ of $V$ such that homomorphisms of $V$ whose image does not belong to $W$ contains a full subcategory isomorphic to the category of all graphs. A semigroup variety $V$ is nearly $J$-trivial if for every semigroup $S\in V$ any $ J$-class containing a group is a singleton. We prove that for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $Q$-universal; $ V$ is var-relatively alg-universal; $V$ is $\alpha $-determined for no cardinal $\alpha $; $V$ contains at least one of the three specific semigroups. Dually, for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $3$-determined; $V$ is not var-relatively alg-universal; the lattice of all subquasivarieties of $V$ is finite; $V$ is a subvariety of one of two special finitely generated varieties.
A category $K$ is called $\alpha $-determined if every set of non-isomorphic $K$-objects such that their endomorphism monoids are isomorphic has a cardinality less than $\alpha $. A quasivariety $Q$ is called $Q$-universal if the lattice of all subquasivarieties of any quasivariety of finite type is a homomorphic image of a sublattice of the lattice of all subquasivarieties of $Q$. We say that a variety $V$ is var-relatively alg-universal if there exists a proper subvariety $W$ of $V$ such that homomorphisms of $V$ whose image does not belong to $W$ contains a full subcategory isomorphic to the category of all graphs. A semigroup variety $V$ is nearly $J$-trivial if for every semigroup $S\in V$ any $ J$-class containing a group is a singleton. We prove that for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $Q$-universal; $ V$ is var-relatively alg-universal; $V$ is $\alpha $-determined for no cardinal $\alpha $; $V$ contains at least one of the three specific semigroups. Dually, for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $3$-determined; $V$ is not var-relatively alg-universal; the lattice of all subquasivarieties of $V$ is finite; $V$ is a subvariety of one of two special finitely generated varieties.
Classification : 08B15, 08C15, 18B15, 20M07, 20M99
Keywords: semigroup variety; band variety; full embedding; $f\!f$-alg-universality; determinacy; $Q$-universality
@article{ARM_2006_42_4_a2,
     author = {Demlov\'a, Marie and Koubek, V\'aclav},
     title = {On universality of semigroup varieties},
     journal = {Archivum mathematicum},
     pages = {357--386},
     year = {2006},
     volume = {42},
     number = {4},
     mrnumber = {2283018},
     zbl = {1152.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a2/}
}
TY  - JOUR
AU  - Demlová, Marie
AU  - Koubek, Václav
TI  - On universality of semigroup varieties
JO  - Archivum mathematicum
PY  - 2006
SP  - 357
EP  - 386
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a2/
LA  - en
ID  - ARM_2006_42_4_a2
ER  - 
%0 Journal Article
%A Demlová, Marie
%A Koubek, Václav
%T On universality of semigroup varieties
%J Archivum mathematicum
%D 2006
%P 357-386
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a2/
%G en
%F ARM_2006_42_4_a2
Demlová, Marie; Koubek, Václav. On universality of semigroup varieties. Archivum mathematicum, Tome 42 (2006) no. 4, pp. 357-386. http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a2/

[1] Adams, M. E., Adaricheva, K. V., Dziobiak, W. and A. V. Kravchenko, A. V.: Some open question related to the problem of Birkhoff and Maltsev. Studia Logica 78 (2004), 357–378. | MR

[2] Adams, M. E  and Dziobiak, W.: $Q$-universal quasivarieties of algebras. Proc. Amer. Math. Soc. 120 (1994), 1053–1059. | MR

[3] Adams, M. E  and Dziobiak, W.: Lattices of quasivarieties of $3$-element algebras. J. Algebra 166 (1994), 181–210. | MR

[4] Adams, M. E  and Dziobiak, W.: Finite-to-finite universal quasivarieties are $Q$-universal. Algebra Universalis 46 (2001), 253–283. | MR

[5] Adams, M. E  and Dziobiak, W.: Quasivarieties of idempotent semigroups. Internat. J. Algebra Comput. 13 (2003), 733–752. | MR

[6] Birjukov, A. P.: Varieties of idempotent semigroups. Algebra i Logika 9 (1970), 255–273. (in Russian) | MR

[7] Clifford, A. H. and Preston, G.B.: The Algebraic Theory of Semigroups. AMS, Providence, (vol. 1 1961, vol. 2 1967).

[8] Demlová, M. and Koubek, V.: Endomorphism monoids of bands. Semigroup Forum 38 (1989), 305–329. | MR

[9] Demlová, M. and Koubek, V.: Endomorphism monoids in varieties of bands. Acta Sci. Math. (Szeged) 66 (2000), 477–516. | MR

[10] Demlová, M. and Koubek, V.: Weaker universalities in semigroup varieties. Novi Sad J. Math. 34 (2004), 37–86. | MR

[11] Demlová, M. and Koubek, V.: Weak alg-universality and $Q$-universality of semigroup quasivarieties. Comment. Math. Univ. Carolin. 46 (2005), 257–279. | MR

[12] Dziobiak, W.: On subquasivariety lattices of some varieties related with distributive $p$-algebras. Algebra Universalis 21 (1985), 205–214. | MR | Zbl

[13] Dziobiak, W.: The subvariety lattice of the variety of distributive double $ p$-algebras. Bull. Austral. Math. Soc. 31 (1985), 377–387. | MR | Zbl

[14] Fennemore, Ch.: All varieties of bands. Semigroup Forum 1 (1970), 172–179. | MR | Zbl

[15] Gerhard, J. A.: The lattice of equational classes of idempotent semigroups. J. Algebra 15 (1970), 195–224. | MR | Zbl

[16] Gerhard, J. A. and Shafaat, A.: Semivarieties of idempotent semigroups. Proc. London Math. Soc. 22 (1971), 667–680. | MR

[17] Goralčík, P. and Koubek, V.: Minimal group–universal varieties of semigroups. Algebra Universalis 21 (1985), 111-122. | MR

[18] Hedrlín, Z. and Lambek, J.: How comprehensive is the category of semigroups?. J. Algebra 11 (1969), 195–212. | MR

[19] Hedrlín, Z. and Pultr, A.: Relations (graphs) with finitely generated semigroups. Monatsh. Math. 68 (1964), 213–217. | MR

[20] Hedrlín, Z. and Pultr, A.: Symmetric relations (undirected graphs) with given semigroups. Monatsh. Math. 69 (1965), 318–322. | MR

[21] Hedrlín, Z. and Sichler, J.: Any boundable binding category contains a proper class of mutually disjoint copies of itself. Algebra Universalis 1 (1971), 97–103. | MR

[22] Koubek, V.: Graphs with given subgraphs represent all categories. Comment. Math. Univ. Carolin. 18 (1977), 115–127. | MR | Zbl

[23] Koubek, V.: Graphs with given subgraphs represent all categories II. Comment. Math. Univ. Carolin. 19 (1978), 249–264. | MR | Zbl

[24] Koubek, V. and Radovanská, H.: Algebras determined by their endomorphism monoids. Cahiers Topologie Géom. Différentielle Catég. 35 (1994), 187–225. | MR

[25] Koubek, V. and Sichler, J.: Universal varieties of semigroups. J. Austral. Math. Soc. Ser. A 36 (1984), 143–152. | MR

[26] Koubek, V. and Sichler, J.: Equimorphy in varieties of distributive double $p$-algebras. Czechoslovak Math. J. 48 (1998), 473–544. | MR

[27] Koubek, V. and Sichler, J.: On relatively universality and $Q$-universality. Studia Logica 78 (2004), 279–291. | MR

[28] Pultr, A. and Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. | MR

[29] Rosický, J.: On example concerning testing categories. Comment. Math. Univ. Carolin. 18 (1977), 71–75. | MR

[30] Sapir, M. V.: Varieties with a finite number of subquasivarieties. Sib. Math. J. 22 (1981), 168–187. | MR | Zbl

[31] Sapir, M. V.: Varieties with countable number of subquasivarieties. Sib. Math. J. 25 (1984), 148–163. | MR

[32] Sapir, M. V.: The lattice of quasivarieties of semigroups. Algebra Universalis 21 (1985), 172–180. | MR | Zbl

[33] Schein, B.M.: Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups. Fund. Math. 68 (1970), 31–50. | MR | Zbl

[34] Schein, B.M.: Bands with isomorphic endomorphism semigroups. J. Algebra 96 (1985), 548–565. | MR | Zbl