Initial normal covers in bi-Heyting toposes
Archivum mathematicum, Tome 42 (2006) no. 4, pp. 335-356 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The dual of the category of pointed objects of a topos is semi-abelian, thus is provided with a notion of semi-direct product and a corresponding notion of action. In this paper, we study various conditions for representability of these actions. First, we show this to be equivalent to the existence of initial normal covers in the category of pointed objects of the topos. For Grothendieck toposes, actions are representable provided the topos admits an essential Boolean covering. This contains the case of Boolean toposes and toposes of presheaves. In the localic case, the representability of actions forces the topos to be bi-Heyting: the lattices of subobjects are both Heyting algebras and the dual of Heyting algebras.
The dual of the category of pointed objects of a topos is semi-abelian, thus is provided with a notion of semi-direct product and a corresponding notion of action. In this paper, we study various conditions for representability of these actions. First, we show this to be equivalent to the existence of initial normal covers in the category of pointed objects of the topos. For Grothendieck toposes, actions are representable provided the topos admits an essential Boolean covering. This contains the case of Boolean toposes and toposes of presheaves. In the localic case, the representability of actions forces the topos to be bi-Heyting: the lattices of subobjects are both Heyting algebras and the dual of Heyting algebras.
Classification : 06D20, 18B25
@article{ARM_2006_42_4_a1,
     author = {Borceux, Francis and Bourn, Dominique and Johnstone, Peter},
     title = {Initial normal covers in {bi-Heyting} toposes},
     journal = {Archivum mathematicum},
     pages = {335--356},
     year = {2006},
     volume = {42},
     number = {4},
     mrnumber = {2283017},
     zbl = {1164.18301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a1/}
}
TY  - JOUR
AU  - Borceux, Francis
AU  - Bourn, Dominique
AU  - Johnstone, Peter
TI  - Initial normal covers in bi-Heyting toposes
JO  - Archivum mathematicum
PY  - 2006
SP  - 335
EP  - 356
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a1/
LA  - en
ID  - ARM_2006_42_4_a1
ER  - 
%0 Journal Article
%A Borceux, Francis
%A Bourn, Dominique
%A Johnstone, Peter
%T Initial normal covers in bi-Heyting toposes
%J Archivum mathematicum
%D 2006
%P 335-356
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a1/
%G en
%F ARM_2006_42_4_a1
Borceux, Francis; Bourn, Dominique; Johnstone, Peter. Initial normal covers in bi-Heyting toposes. Archivum mathematicum, Tome 42 (2006) no. 4, pp. 335-356. http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a1/

[1] Borceux F.: When is $\Omega $ a cogenerator in a topos?. Cahiers Topol. Géom. Diff. 16 (1975), 3–15. | MR | Zbl

[2] Borceux F.: Handbook of Categorical Algebra 3: Categories of Sheaves. Encyclopaedia Math. Appl. 52 (1994). | MR | Zbl

[3] Borceux F.: A survey of semi-abelian categories. In: Galois theory, Hopf Algebras, and Semi-abelian Categories, Fields Inst. Commun. 43 (2004), 27–60. | MR | Zbl

[4] Borceux F., Bourn D.: Mal’cev, Protomodular, Homological and Semi-abelian Categories. Math. Appl. 566 (2004). | MR | Zbl

[5] Borceux F., Bourn D.: Split extension classifier and centrality. to appear in the Proceedings of the Streetfest 2005. | MR | Zbl

[6] Borceux F., Janelidze G., Kelly G. M.: Internal object actions. Comment. Math. Univ. Carolin. 46 (2005), 235–255. | MR | Zbl

[7] Borceux F., Janelidze G., Kelly G. M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14 (2005), 244–286. | MR | Zbl

[8] Bourn D.: Normal functors and strong protomodularity. Theory Appl. Categ. 7 (2000), 206–218. | MR | Zbl

[9] Bourn D.: A categorical genealogy for the congruence distributive property. Theory Appl. Categ. 8 (2001), 391–407. | MR | Zbl

[10] Bourn D.: Protomodular aspects of the dual of a topos. Adv. Math. 187 (2004), 240–255. | MR

[11] Bourn D., Janelidze G.: Protomodularity, descent and semi-direct products. Theory Appl. Categ. 4 (1998), 37–46. | MR

[12] Janelidze G., Márki L., Tholen W.: Semi-abelian categories. J. Pure Appl. Alg. 168 (2002), 367–386. | MR | Zbl

[13] Johnstone P. T.: Stone Spaces. Cambridge Stud. Adv. Math. No. 3 (1982). | MR | Zbl

[14] Johnstone P. T.: Sketches of an Elephant: a Topos Theory Compendium. volumes 1–2, Oxford Logic Guides 43–44 (2002). | MR | Zbl

[15] Mac Lane S.: Categories for the Working Mathematician. Graduate Texts in Math. No. 5 (1971; revised edition 1998). | Zbl