A logic of orthogonality
Archivum mathematicum, Tome 42 (2006) no. 4, pp. 309-334 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A logic of orthogonality characterizes all “orthogonality consequences" of a given class $\Sigma $ of morphisms, i.e. those morphisms $s$ such that every object orthogonal to $\Sigma $ is also orthogonal to $s$. A simple four-rule deduction system is formulated which is sound in every cocomplete category. In locally presentable categories we prove that the deduction system is also complete (a) for all classes $\Sigma $ of morphisms such that all members except a set are regular epimorphisms and (b) for all classes $\Sigma $, without restriction, under the set-theoretical assumption that Vopěnka’s Principle holds. For finitary morphisms, i.e. morphisms with finitely presentable domains and codomains, an appropriate finitary logic is presented, and proved to be sound and complete; here the proof follows immediately from previous joint results of Jiří Rosický and the first two authors.
A logic of orthogonality characterizes all “orthogonality consequences" of a given class $\Sigma $ of morphisms, i.e. those morphisms $s$ such that every object orthogonal to $\Sigma $ is also orthogonal to $s$. A simple four-rule deduction system is formulated which is sound in every cocomplete category. In locally presentable categories we prove that the deduction system is also complete (a) for all classes $\Sigma $ of morphisms such that all members except a set are regular epimorphisms and (b) for all classes $\Sigma $, without restriction, under the set-theoretical assumption that Vopěnka’s Principle holds. For finitary morphisms, i.e. morphisms with finitely presentable domains and codomains, an appropriate finitary logic is presented, and proved to be sound and complete; here the proof follows immediately from previous joint results of Jiří Rosický and the first two authors.
Classification : 03C05, 03G30, 18C10, 18C35
@article{ARM_2006_42_4_a0,
     author = {Ad\'amek, Ji\v{r}{\'\i} and H\'ebert, M. and Sousa, L.},
     title = {A logic of orthogonality},
     journal = {Archivum mathematicum},
     pages = {309--334},
     year = {2006},
     volume = {42},
     number = {4},
     mrnumber = {2283016},
     zbl = {1156.18301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a0/}
}
TY  - JOUR
AU  - Adámek, Jiří
AU  - Hébert, M.
AU  - Sousa, L.
TI  - A logic of orthogonality
JO  - Archivum mathematicum
PY  - 2006
SP  - 309
EP  - 334
VL  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a0/
LA  - en
ID  - ARM_2006_42_4_a0
ER  - 
%0 Journal Article
%A Adámek, Jiří
%A Hébert, M.
%A Sousa, L.
%T A logic of orthogonality
%J Archivum mathematicum
%D 2006
%P 309-334
%V 42
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a0/
%G en
%F ARM_2006_42_4_a0
Adámek, Jiří; Hébert, M.; Sousa, L. A logic of orthogonality. Archivum mathematicum, Tome 42 (2006) no. 4, pp. 309-334. http://geodesic.mathdoc.fr/item/ARM_2006_42_4_a0/

[1] Adámek J., Hébert M., Sousa L.: A Logic of Injectivity. Preprints of the Department of Mathematics of the University of Coimbra 06-23 (2006). | MR | Zbl

[2] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories. John Wiley and Sons, New York 1990. Freely available at www.math.uni-bremen.de/$\sim $dmb/acc.pdf | MR

[3] Adámek J., Rosický J.: Locally presentable and accessible categories. Cambridge University Press, 1994. | MR | Zbl

[4] Adámek J., Sobral M., Sousa L.: A logic of implications in algebra and coalgebra. Preprint. | MR | Zbl

[5] Borceux F.: Handbook of Categorical Algebra I. Cambridge University Press, 1994.

[6] Casacuberta C., Frei A.: On saturated classes of morphisms. Theory Appl. Categ. 7, No. 4 (2000), 43–46. | MR | Zbl

[7] Freyd P. J., Kelly G. M.: Categories of continuous functors I. J. Pure Appl. Algebra 2 (1972), 169–191. | MR | Zbl

[8] Gabriel P., Zisman M.: Calculus of Fractions and Homotopy Theory. Springer Verlag 1967. | MR | Zbl

[9] Hébert M.: $\mathcal{K}$-Purity and orthogonality. Theory Appl. Categ. 12, No. 12 (2004), 355–371. | MR

[10] Hébert M., Adámek J., Rosický J.: More on orthogonolity in locally presentable categories. Cahiers Topologie Géom. Différentielle Catég. 62 (2001), 51–80. | MR

[11] Mac Lane S.: Categories for the Working Mathematician. Springer-Verlag, Berlin-Heidelberg-New York 1971. | Zbl

[12] Roşu G.: Complete categorical equational deduction. Lecture Notes in Comput. Sci. 2142 (2001), 528–538. | MR