From Euler-Lagrange equations to canonical nonlinear connections
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 255-263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to construct a canonical nonlinear connection $\Gamma =(M_{(\alpha )\beta }^{(i)}, N_{(\alpha )j}^{(i)})$ on the 1-jet space $J^{1}(T,M)$ from the Euler-Lagrange equations of the quadratic multi-time Lagrangian function \[ L=h^{\alpha \beta }(t)g_{ij}(t,x)x_{\alpha }^{i}x_{\beta }^{j}+U_{(i)}^{(\alpha )}(t,x)x_{\alpha }^{i}+F(t,x)\,. \]
The aim of this paper is to construct a canonical nonlinear connection $\Gamma =(M_{(\alpha )\beta }^{(i)}, N_{(\alpha )j}^{(i)})$ on the 1-jet space $J^{1}(T,M)$ from the Euler-Lagrange equations of the quadratic multi-time Lagrangian function \[ L=h^{\alpha \beta }(t)g_{ij}(t,x)x_{\alpha }^{i}x_{\beta }^{j}+U_{(i)}^{(\alpha )}(t,x)x_{\alpha }^{i}+F(t,x)\,. \]
Classification : 53C80, 70G45, 70S05
Keywords: 1-jet fibre bundles; nonlinear connections; quadratic Lagrangian functions
@article{ARM_2006_42_3_a7,
     author = {Neagu, Mircea},
     title = {From {Euler-Lagrange} equations to canonical nonlinear connections},
     journal = {Archivum mathematicum},
     pages = {255--263},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2260385},
     zbl = {1164.53327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a7/}
}
TY  - JOUR
AU  - Neagu, Mircea
TI  - From Euler-Lagrange equations to canonical nonlinear connections
JO  - Archivum mathematicum
PY  - 2006
SP  - 255
EP  - 263
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a7/
LA  - en
ID  - ARM_2006_42_3_a7
ER  - 
%0 Journal Article
%A Neagu, Mircea
%T From Euler-Lagrange equations to canonical nonlinear connections
%J Archivum mathematicum
%D 2006
%P 255-263
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a7/
%G en
%F ARM_2006_42_3_a7
Neagu, Mircea. From Euler-Lagrange equations to canonical nonlinear connections. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 255-263. http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a7/

[1] Asanov G. S.: Gauge-Covariant Stationary Curves on Finslerian and Jet Fibrations and Gauge Extension of Lorentz Force. Tensor (N.S.) 50 (1991), 122–137. | MR

[2] Asanov G. S.: Jet Extension of Finslerian Gauge Approach. Fortschr. Phys. 38(8) (1990), 571–610. | MR | Zbl

[3] Cordero L. A., Dodson C. T. J., de Léon M.: Differential Geometry of Frame Bundles. Kluwer Academic Publishers, 1989. | MR | Zbl

[4] Eells J., Lemaire L.: A Report on Harmonic Maps. Bull. London Math. Soc. 10 (1978), 1–68. | MR | Zbl

[5] Giachetta G., Mangiarotti L., Sardanashvily G.: Covariant Hamiltonian Field Theory. http://xxx.lanl.gov/hep-th/9904062, (1999).

[6] Gotay M. J., Isenberg J., Marsden J. E.: Momentum Maps and the Hamiltonian Structure of Classical Relativistic Fields. http://xxx.lanl.gov/hep/9801019, (1998).

[7] Holm D. D., Marsden J. E., Raţiu T. S.: The Euler-Poincaré Equations and Semidirect Products with Applications to Continuum Theories. http://xxx.lanl.gov/chao-dyn/9801015, (1998). | MR | Zbl

[8] Kamran N., Olver P. J.: Le Probléme d’Equivalence à une Divergence prés dans le Calcul des Variations des Intégrales Multiple. C. R. Acad. Sci. Paris, 308, Série I, (1989), 249–252. | MR

[9] Michor P. W., Raţiu T. S.: On the Geometry of the Virasoro-Bott Group. Helderman-Verlag, No. 8 (1998), 293–309. | MR | Zbl

[10] Miron R., Anastasiei M.: The Geometry of Lagrange Spaces: Theory and Applications. Kluwer Academic Publishers, 1994. | MR | Zbl

[11] Miron R., Kirkovits M. S., Anastasiei M.: A Geometrical Model for Variational Problems of Multiple Integrals. Proc. Conf. Diff. Geom. Appl., June 26-July 3, (1988), Dubrovnik, Yugoslavia. | MR

[12] Neagu M.: Generalized Metrical Multi-Time Lagrange Geometry of Physical Fields. Forum Math. 15(1) (2003), 63–92. | MR | Zbl

[13] Neagu M.: Ricci and Bianchi Identities for $h$-Normal $\Gamma $-Linear Connections on $J^{1}(T,M)$. Hindawi Publishing Corporation, Int. J. Math. Math. Sci. 34 (2003), 2177–2192. | MR

[14] Neagu M.: The Geometry of Relativistic Rheonomic Lagrange Spaces. Proceedings of Workshop on Diff. Geom., Global Analysis, Lie Algebras, No. 5, 142–169, (2001); Editor: Prof. Dr. Grigorios Tsagas, Aristotle University of Thessaloniki, Greece. | MR | Zbl

[15] Neagu M., Udrişte C., Oană A.: Multi-Time Dependent Sprays and h-Traceless Maps. Balkan J. Geom. Appl. 10(2) (2005), 76–92. | MR

[16] Olver P. J.: Applications of Lie Groups to Differential Equations. Springer-Verlag, 1986. | MR | Zbl

[17] Olver P. J.: Canonical Elastic Moduli. J. Elasticity 19, 189–212, (1988). | MR | Zbl

[18] Saunders D.: The Geometry of Jet Bundles. Cambridge University Press, New-York, London, 1989. | MR | Zbl

[19] Vondra A.: Symmetries of Connections on Fibered Manifolds. Arch. Math. (Brno) 30 (1994), 97–115. | MR | Zbl