Periodic solutions for systems with nonsmooth and partially coercive potential
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 225-232 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).
In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).
Classification : 34A60, 34B15, 34C25, 47J30, 47N20
Keywords: locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory; nonsmooth Palais-Smale condition; $p$-Laplacian; periodic system
@article{ARM_2006_42_3_a2,
     author = {Filippakis, Michael E.},
     title = {Periodic solutions for systems with nonsmooth and partially coercive potential},
     journal = {Archivum mathematicum},
     pages = {225--232},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2260380},
     zbl = {1164.34319},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a2/}
}
TY  - JOUR
AU  - Filippakis, Michael E.
TI  - Periodic solutions for systems with nonsmooth and partially coercive potential
JO  - Archivum mathematicum
PY  - 2006
SP  - 225
EP  - 232
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a2/
LA  - en
ID  - ARM_2006_42_3_a2
ER  - 
%0 Journal Article
%A Filippakis, Michael E.
%T Periodic solutions for systems with nonsmooth and partially coercive potential
%J Archivum mathematicum
%D 2006
%P 225-232
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a2/
%G en
%F ARM_2006_42_3_a2
Filippakis, Michael E. Periodic solutions for systems with nonsmooth and partially coercive potential. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 225-232. http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a2/

[1] Adams R.: Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York/London 1975. | MR | Zbl

[2] Berger M. Schechter M.: On the solvability of semilinear gradient operator equations. Adv. Math. 25 (1977), 97–132. | MR

[3] Brezis H., Nirenberg L.: Remarks on finding critical points. Comm. Pure Appl. Math. 44 (1991), 939–963. | MR | Zbl

[4] Chang K. C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | MR

[5] Clarke F.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. | MR | Zbl

[6] Dang H., Oppenheimer S.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198, (1996) 35–48. | MR

[7] del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlinear Anal. 18, (1992) 79–92. | MR

[8] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. | MR

[9] Gasinski L., Papageorgiou N. S.: A multiplicity result for nonlinear second order periodic equations with nonsmooth potential. Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258. | MR | Zbl

[10] Guo Z.: Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. | MR

[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands 1997. | MR | Zbl

[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, The Netherlands 2000. | MR | Zbl

[13] Kandilakis D., Kourogenis N., Papageorgiou N.: Two nontrivial critical point for nosmooth functional via local linking and applications. J. Global Optim., to appear. | MR

[14] Kourogenis N., Papageorgiou N. S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. Ser. A 69 (2000), 245–271. | MR | Zbl

[15] Kourogenis N., Papageorgiou N. S.: A weak nonsmooth Palais-Smale condition and coercivity. Rend. Circ. Mat. Palermo 49 (2000), 521–526. | MR | Zbl

[16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393. | MR

[17] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989. | MR | Zbl

[18] Tang C. L., Wu X. P.: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259 (2001), 386–397. | MR | Zbl