Keywords: locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory; nonsmooth Palais-Smale condition; $p$-Laplacian; periodic system
@article{ARM_2006_42_3_a2,
author = {Filippakis, Michael E.},
title = {Periodic solutions for systems with nonsmooth and partially coercive potential},
journal = {Archivum mathematicum},
pages = {225--232},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2260380},
zbl = {1164.34319},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a2/}
}
Filippakis, Michael E. Periodic solutions for systems with nonsmooth and partially coercive potential. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 225-232. http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a2/
[1] Adams R.: Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York/London 1975. | MR | Zbl
[2] Berger M. Schechter M.: On the solvability of semilinear gradient operator equations. Adv. Math. 25 (1977), 97–132. | MR
[3] Brezis H., Nirenberg L.: Remarks on finding critical points. Comm. Pure Appl. Math. 44 (1991), 939–963. | MR | Zbl
[4] Chang K. C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | MR
[5] Clarke F.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. | MR | Zbl
[6] Dang H., Oppenheimer S.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198, (1996) 35–48. | MR
[7] del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlinear Anal. 18, (1992) 79–92. | MR
[8] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. | MR
[9] Gasinski L., Papageorgiou N. S.: A multiplicity result for nonlinear second order periodic equations with nonsmooth potential. Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258. | MR | Zbl
[10] Guo Z.: Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. | MR
[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands 1997. | MR | Zbl
[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, The Netherlands 2000. | MR | Zbl
[13] Kandilakis D., Kourogenis N., Papageorgiou N.: Two nontrivial critical point for nosmooth functional via local linking and applications. J. Global Optim., to appear. | MR
[14] Kourogenis N., Papageorgiou N. S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. Ser. A 69 (2000), 245–271. | MR | Zbl
[15] Kourogenis N., Papageorgiou N. S.: A weak nonsmooth Palais-Smale condition and coercivity. Rend. Circ. Mat. Palermo 49 (2000), 521–526. | MR | Zbl
[16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393. | MR
[17] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989. | MR | Zbl
[18] Tang C. L., Wu X. P.: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259 (2001), 386–397. | MR | Zbl