Ideal tubular hypersurfaces in real space forms
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 295-305 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article we give a classification of tubular hypersurfaces in real space forms which are $\delta (2,2,\ldots ,2)$-ideal.
In this article we give a classification of tubular hypersurfaces in real space forms which are $\delta (2,2,\ldots ,2)$-ideal.
Classification : 53C40, 53C42
Keywords: tubular hypersurfaces; ideal immersion; real space form
@article{ARM_2006_42_3_a11,
     author = {Fastenakels, Johan},
     title = {Ideal tubular hypersurfaces in real space forms},
     journal = {Archivum mathematicum},
     pages = {295--305},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2260389},
     zbl = {1164.53321},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a11/}
}
TY  - JOUR
AU  - Fastenakels, Johan
TI  - Ideal tubular hypersurfaces in real space forms
JO  - Archivum mathematicum
PY  - 2006
SP  - 295
EP  - 305
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a11/
LA  - en
ID  - ARM_2006_42_3_a11
ER  - 
%0 Journal Article
%A Fastenakels, Johan
%T Ideal tubular hypersurfaces in real space forms
%J Archivum mathematicum
%D 2006
%P 295-305
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a11/
%G en
%F ARM_2006_42_3_a11
Fastenakels, Johan. Ideal tubular hypersurfaces in real space forms. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 295-305. http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a11/

[1] B. Y. Chen: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60 (1993), 568-578. | MR | Zbl

[2] B. Y. Chen: Tubular hypersurfaces satisfying a basic equality. Soochow Journal of Mathematics 20 No. 4 (1994), 569-586. | MR | Zbl

[3] B. Y. Chen: Some new obstructions to minimal and Lagrangian isometric immersions. Japan J. Math. 26 (2000), 105-127. | MR | Zbl

[4] B. Y. Chen: Strings of Riemannian invariants, inequalities, ideal immersions and their applications. in Third Pacific Rim Geom. Conf., (Intern. Press, Cambridge, MA), (1998), 7-60. | MR | Zbl

[5] R. Harvey, H. B. Lawson, Jr.: Calibrated geometries. Acta Math. 148 (1982), 47-157. | MR | Zbl