Fiber product preserving bundle functors on all morphisms of fibered manifolds
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 285-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe the fiber product preserving bundle functors on the category of all morphisms of fibered manifolds in terms of infinite sequences of Weil algebras and actions of the skeleton of the category of $r$-jets by algebra homomorphisms. We deduce an explicit formula for the iteration of two such functors. We characterize the functors with values in vector bundles.
We describe the fiber product preserving bundle functors on the category of all morphisms of fibered manifolds in terms of infinite sequences of Weil algebras and actions of the skeleton of the category of $r$-jets by algebra homomorphisms. We deduce an explicit formula for the iteration of two such functors. We characterize the functors with values in vector bundles.
Classification : 58A20, 58A32
Keywords: fiber product preserving bundle functor; Weil algebra; $r$-jet
@article{ARM_2006_42_3_a10,
     author = {Kol\'a\v{r}, Ivan and Mikulski, W{\l}odzimierz M.},
     title = {Fiber product preserving bundle functors on all morphisms of fibered manifolds},
     journal = {Archivum mathematicum},
     pages = {285--293},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2260388},
     zbl = {1164.58306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a10/}
}
TY  - JOUR
AU  - Kolář, Ivan
AU  - Mikulski, Włodzimierz M.
TI  - Fiber product preserving bundle functors on all morphisms of fibered manifolds
JO  - Archivum mathematicum
PY  - 2006
SP  - 285
EP  - 293
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a10/
LA  - en
ID  - ARM_2006_42_3_a10
ER  - 
%0 Journal Article
%A Kolář, Ivan
%A Mikulski, Włodzimierz M.
%T Fiber product preserving bundle functors on all morphisms of fibered manifolds
%J Archivum mathematicum
%D 2006
%P 285-293
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a10/
%G en
%F ARM_2006_42_3_a10
Kolář, Ivan; Mikulski, Włodzimierz M. Fiber product preserving bundle functors on all morphisms of fibered manifolds. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 285-293. http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a10/

[1] Cabras A., Kolář I.: Flow prolongation of some tangent valued forms. to appear in Acta Mathematica Sinica. | MR

[2] Doupovec M., Kolář I.: Iteration of fiber product preserving bundle functors. Monatsh. Math. 134 (2001), 39–50. | MR | Zbl

[3] Kolář I.: Functorial prolongations of Lie algebroids. Proceedings Conf. Prague 2004, Charles University, Prague, 2005, 301–309. | MR

[4] Kolář I.: Functorial prolongations of Lie groupoids. to appear in Banach Center Publications. | MR | Zbl

[5] Kolář I., Cabras A.: On the functorial prolongations of principal bundles. to appear in CMUC. | MR | Zbl

[6] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR

[7] Kolář I., Mikulski W. M.: On the fiber product preserving bundle functors. Differential Geometry and Its Applications 11 (1999), 105–115. | MR | Zbl

[8] Mikulski W. M.: There exists a prolongation functor of infinite order. Časopis pěst. mat. 114 (1989), 57–59. | MR | Zbl

[9] Mikulski W. M.: Natural transformations of Weil functors into bundle functors. Rend. Circ. Mat. Palermo (2), Suppl. 22 (1989), 177–191. | MR

[10] Weil A.: Théorie des points proches sur les variétes différentielles. Colloque de topol. et géom. diff., Strasbourg (1953), 111–117. | MR