On 4-dimensional locally conformally flat almost Kähler manifolds
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 215-223
Using the fundamental notions of the quaternionic analysis we show that there are no 4-dimensional almost Kähler manifolds which are locally conformally flat with a metric of a special form.
Using the fundamental notions of the quaternionic analysis we show that there are no 4-dimensional almost Kähler manifolds which are locally conformally flat with a metric of a special form.
Classification :
30G35, 53C15
Keywords: almost Kähler manifold; quaternionic analysis; regular function in the sense of Fueter
Keywords: almost Kähler manifold; quaternionic analysis; regular function in the sense of Fueter
@article{ARM_2006_42_3_a1,
author = {Kr\'olikowski, Wies{\l}aw},
title = {On 4-dimensional locally conformally flat almost {K\"ahler} manifolds},
journal = {Archivum mathematicum},
pages = {215--223},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2260379},
zbl = {1164.53383},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a1/}
}
Królikowski, Wiesław. On 4-dimensional locally conformally flat almost Kähler manifolds. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 215-223. http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a1/
[1] Fueter, R.: Die Funktionentheorie der Differentialgleichungen ${\triangle }u=0$ und ${\triangle }{\triangle }u = 0$ mit vier reellen Variablen. Comment. Math. Helv. 7 (1935), 307–330. | MR
[2] Goldberg, S. I.: Integrability of almost Kähler manifolds. Proc. Amer. Math. Soc. 21 (1969), 96–100. | MR | Zbl
[3] Królikowski, W.: On Fueter-Hurwitz regular mappings. Diss. Math. 353 (1996). | MR
[4] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. I – II, Interscience, 1963. | MR
[5] Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. | MR | Zbl