A nonlinear periodic system with nonsmooth potential of indefinite sign
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 205-213 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider a nonlinear periodic system driven by the vector ordinary $p$-Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.
In this paper we consider a nonlinear periodic system driven by the vector ordinary $p$-Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.
Classification : 34A60, 34B15, 34C25, 47J30, 47N20
Keywords: locally Lipschitz function; generalized subdifferential; $p$-Laplacian; homogeneous function; variational method; Poincare-Wirtinger inequality; potential indefinite in sign
@article{ARM_2006_42_3_a0,
     author = {Filippakis, Michael E. and Papageorgiou, Nikolaos S.},
     title = {A nonlinear periodic system with nonsmooth potential of indefinite sign},
     journal = {Archivum mathematicum},
     pages = {205--213},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2260378},
     zbl = {1164.34404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a0/}
}
TY  - JOUR
AU  - Filippakis, Michael E.
AU  - Papageorgiou, Nikolaos S.
TI  - A nonlinear periodic system with nonsmooth potential of indefinite sign
JO  - Archivum mathematicum
PY  - 2006
SP  - 205
EP  - 213
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a0/
LA  - en
ID  - ARM_2006_42_3_a0
ER  - 
%0 Journal Article
%A Filippakis, Michael E.
%A Papageorgiou, Nikolaos S.
%T A nonlinear periodic system with nonsmooth potential of indefinite sign
%J Archivum mathematicum
%D 2006
%P 205-213
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a0/
%G en
%F ARM_2006_42_3_a0
Filippakis, Michael E.; Papageorgiou, Nikolaos S. A nonlinear periodic system with nonsmooth potential of indefinite sign. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 205-213. http://geodesic.mathdoc.fr/item/ARM_2006_42_3_a0/

[1] Adly S., Goeleven D.: Homoclinic orbits for a class of hemivariational inequalities. Appl. Anal. 58 (1995), 229–240. | MR | Zbl

[2] Adly S., Goeleven D., Motreanu D.: Periodic and homoclinic solutions for a class of unilateral problems. Discrete Contin. Dynam. Systems 3 (1997), 579–590. | MR | Zbl

[3] Adly S., Motreanu D.: Periodic solutions for second-order differential equations involving nonconvex superpotentials. J. Global Optim. 17 (2000), 9–17. | MR | Zbl

[4] Antonacci F.: Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 29 (1997), 1353–1364. | MR | Zbl

[5] Ben Naoum A. K., Troestler C., Willem M.: Existence and multiplicity results for homogeneous second order differential equations. J. Differential Equations 112 (1994), 239–249. | MR | Zbl

[6] Clarke F. H.: A new approach to Lagrange multipliers. Math. Oper. Res. I (1976), 165–174. | MR | Zbl

[7] Denkowski Z., Migorski S., Papageorgiou N. S.: An introduction to Nonlinear Analysis. Theory. Kluwer/Plenum, New York (2003). | MR | Zbl

[8] Denkowski Z., Migorski S., Papageorgiou N. S.: An introduction to Nonlinear Analysis. Applications. Kluwer/Plenum, New York (2003). | MR | Zbl

[9] Girardi M., Matzeu M.: Existence and multiplicity results for periodic solutions for superquadratic systems where the potential changes sign. Nonlinear Differential Equations Appl. 2 (1995), 35–61. | MR

[10] Lassoued L.: Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign. Ann. Math. Pura Appl. 156 (1990), 76–111. | MR

[11] Lassoued L.: Periodic solutions of a second order superquadratic system with a change of sign in the potential. J. Differential Equations 93 (1991), 1–18. | MR | Zbl

[12] Papageorgiou E. H., Papageorgiou N. S.: Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems. Czechoslovak Math. J. 54 (2004), 347–371. | MR | Zbl

[13] Tang C. L., Wu X. P.: Periodic solutions for second order Hamiltonian systems with a change sign potential. J. Math. Anal. 292 (2004), 506–516. | MR | Zbl

[14] Xu Y. T., Guo Z. M.: Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 51 (2002), 1273–1283. | MR | Zbl