Hille-Wintner type comparison kriteria for half-linear second order differential equations
Archivum mathematicum, Tome 42 (2006) no. 2, pp. 185-194 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish Hille-Wintner type comparison criteria for the half-linear second order differential equation \[ \left(r(t)\Phi (x^{\prime })\right)^{\prime }+c(t)\Phi (x)=0,\quad \Phi (x)=|x|^{p-2}x\,,\ p>1\,, \] where this equation is viewed as a perturbation of another equation of the same form.
We establish Hille-Wintner type comparison criteria for the half-linear second order differential equation \[ \left(r(t)\Phi (x^{\prime })\right)^{\prime }+c(t)\Phi (x)=0,\quad \Phi (x)=|x|^{p-2}x\,,\ p>1\,, \] where this equation is viewed as a perturbation of another equation of the same form.
Classification : 34C10, 34C15
Keywords: half-linear differential equation; Hille-Wintner comparison criterion; Riccati equation; principal solution
@article{ARM_2006_42_2_a9,
     author = {Do\v{s}l\'y, Ond\v{r}ej and P\'at{\'\i}kov\'a, Zuzana},
     title = {Hille-Wintner type comparison kriteria for half-linear second order differential equations},
     journal = {Archivum mathematicum},
     pages = {185--194},
     year = {2006},
     volume = {42},
     number = {2},
     mrnumber = {2240356},
     zbl = {1164.34386},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a9/}
}
TY  - JOUR
AU  - Došlý, Ondřej
AU  - Pátíková, Zuzana
TI  - Hille-Wintner type comparison kriteria for half-linear second order differential equations
JO  - Archivum mathematicum
PY  - 2006
SP  - 185
EP  - 194
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a9/
LA  - en
ID  - ARM_2006_42_2_a9
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%A Pátíková, Zuzana
%T Hille-Wintner type comparison kriteria for half-linear second order differential equations
%J Archivum mathematicum
%D 2006
%P 185-194
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a9/
%G en
%F ARM_2006_42_2_a9
Došlý, Ondřej; Pátíková, Zuzana. Hille-Wintner type comparison kriteria for half-linear second order differential equations. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 185-194. http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a9/

[1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht/Boston/London, 2002. | MR

[2] Došlý O.: A remark on conjugacy of half-linear second order differential equations. Math. Slovaca 50 (2000), 67–79. | MR | Zbl

[3] Došlý O.: Half-Linear Differential Equations. Handbook of Differential Equations: Ordinary Differential Equations, Vol. I, A. Cañada, P. Drábek, A. Fonda ed., Elsevier, Amsterdam, 2004, 161–357. | MR | Zbl

[4] Došlý O., Lomtatidze A.: Oscillation and nonoscillation criteria for half-linear second order differential equations. to appear in Hiroshima Math. J. | MR | Zbl

[5] Došlý O., Peňa S.: A linearization method in oscillation theory of half-linear differential equations. to appear in J. Inequal. Appl. | MR

[6] Došlý O., Řezníčková J.: Regular half-linear second order differential equations. Arch. Math. (Brno) 39 (2003), 233–245. | MR | Zbl

[7] Elbert Á., Kusano T.: Principal solutions of nonoscillatory half-linear differential equations. Adv. Math. Sci. Appl. 18 (1998), 745–759.

[8] Elbert Á., Schneider A.: Perturbations of the half-linear Euler differential equation. Results Math. 37 (2000), 56–83. | MR | Zbl

[9] Jaroš J., Kusano T.: A Picone type identity for half-linear differential equations. Acta Math. Univ. Comenian. 68 (1999), 137–151. | MR

[10] Kusano T., Yosida N.: Nonoscillation theorems for a class of quasilinear differential equations of second order. Acta Math. Hungar. 76 (1997), 81–89.

[11] Kusano T., Yosida N., Ogata A.: Strong oscillation and nonoscillation of quasilinear differential equations of second order. Differential Equations Dynam. Systems 2 (1994), 1–10. | MR

[12] Mirzov J. D.: Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. | MR

[13] Řezníčková J.: Half-linear Hartman-Wintner theorems. Stud. Univ. Žilina Math. Phys. Ser. 15 (2002), 56–66. | MR | Zbl

[14] Řezníčková J.: An oscillation criterion for half-linear second order differential equations. Miskolc Math. Notes 5 (2004), 203–212. | MR | Zbl

[15] Sugie J., Yamaoka N.: Growth conditions for oscillation of nonlinear differential equations with $p$-Laplacian. J. Math. Anal. Appl. 305 (2005), 18–34. | MR | Zbl