Keywords: derivation; Frölicher-Nijenhius bracket; symmetric differential; symmetric Lie derivative; symmetric tensor
@article{ARM_2006_42_2_a8,
author = {Heydari, A. and Boroojerdian, N. and Peyghan, E.},
title = {A description of derivations of the algebra of symmetric tensors},
journal = {Archivum mathematicum},
pages = {175--184},
year = {2006},
volume = {42},
number = {2},
mrnumber = {2240355},
zbl = {1164.53401},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a8/}
}
Heydari, A.; Boroojerdian, N.; Peyghan, E. A description of derivations of the algebra of symmetric tensors. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 175-184. http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a8/
[1] Crouch P. E.: Geometric structures in systems theory. Institution of Electrical Engineers. Proccedings D. Control Theory and Applications 128(5) (1981), 242–252. | MR
[2] Frölicher A., Nijenhuis A.: Theory of vector valued differential forms. Part I, Indag. Math. 18 (1956), 338–359. | MR
[3] Greub W., Halperin S., Vanstone R.: Connections, Curvature and Cohomology. Vol 2, Academic Press, 1973. | Zbl
[4] Grozman P.: Classification of bilinear invariant operators on tensor fields. (Russian) Funct. Anal. Appl. 14, No.2 (1980) 58–59; English translation: Funct. Anal. Appl. 14, No. 2 (1980), 127–128. | MR
[5] Lewis A. D., Murray R. M.: Controllability of simple mechanical control systems. SIAM J. Control Optim. 35 (3) (1997), 766–790. | MR | Zbl
[6] Manin Z. I.: Gauge field theory and complex geometry. Springer-Verlag, Berlin, 1988. | MR | Zbl
[7] Michor P. W.: Remarks on the Frölicher-Nijenhuis bracket. Proccedings of the Conference on Differential Geometry and its Applications, Brno (1986), 197–220. | MR
[8] Michor P. W.: Graded derivations of the algebra of differential forms associated with a connection. Proccedings of the Conference on Differential Geometry and its Applications, Peniscola (1988), Springer Lecture Notes in Mathematics, Vol. 1410 (1989), 249–261. | MR
[9] Nijenhuis A., Richardson R.: Cohomoloy and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 72 (1966), 1–29. | MR
[10] Nijenhuis A., Richardson R.: Deformation of Lie algebra structres. J. Math. Mech. 17 (1967), 89–105. | MR
[11] Osborn H.: Affine connections complexes. Acta Appl. Math. 59 (1999), 215–227. | MR
[12] Poor A. W.: Differential geometric structures. McGraw-Hill Company, 1981. | MR | Zbl