Keywords: James Theorem; Bishop-Phelps Theorem; smooth variational principles
@article{ARM_2006_42_2_a7,
author = {Maaden, Abdelhakim and Stouti, Abdelkader},
title = {Some properties on the closed subsets in {Banach} spaces},
journal = {Archivum mathematicum},
pages = {167--174},
year = {2006},
volume = {42},
number = {2},
mrnumber = {2240354},
zbl = {1164.46307},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a7/}
}
Maaden, Abdelhakim; Stouti, Abdelkader. Some properties on the closed subsets in Banach spaces. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 167-174. http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a7/
[1] Azagra D., Deville R.: James’ theorem fails for starlike bodies. J. Funct. Anal. 180 (2) (2001), 328–346. | MR | Zbl
[2] Bishop E., Phelps R. R.: The support cones in Banach spaces and their applications. Adv. Math. 13 (1974), 1–19. | MR
[3] Deville R., El Haddad E.: The subdifferential of the sum of two functions in Banach spaces, I. First order case. J. Convex Anal. 3 (2) (1996), 295–308. | MR
[4] Deville R., Godefroy G., Zizler V.: A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 111 (1993), 197–212. | MR | Zbl
[5] Deville R., Maaden A.: Smooth variational principles in Radon-Nikodým spaces. Bull. Austral. Math. Soc. 60 (1999), 109–118. | MR | Zbl
[6] Diestel J.: Geometry of Banach spaces - Selected topics. Lecture Notes in Math., Berlin – Heidelberg – New York 485 (1975). | MR | Zbl
[7] Fabian M., Mordukhovich B. S.: Separable reduction and extremal principles in variational analysis. Nonlinear Anal. 49 (2) (2002), 265–292. | MR | Zbl
[8] Haydon R.: A counterexample in several question about scattered compact spaces. Bull. London Math. Soc. 22 (1990), 261–268. | MR
[9] Ioffe A. D.: Proximal analysis and approximate subdifferentials. J. London Math. Soc. (2) 41 (1990), 175–192. | MR | Zbl
[10] James R. C.: Weakly compact sets. Trans. Amer. Math. Soc. 113 (1964), 129–140. | MR | Zbl
[11] Leduc M.: Densité de certaines familles d’hyperplans tangents. C. R. Acad. Sci. Paris, Sér. A 270 (1970), 326–328. | MR | Zbl
[12] Mordukhovich B. S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems. Sov. Math. Dokl. 22 (1980), 526–530. | Zbl
[13] Mordukhovich B. S., Shao Y. H.: Extremal characterizations of Asplund spaces. Proc. Amer. Math. Soc. 124 (1) (1996), 197–205. | MR | Zbl
[14] Mordukhovich B. S., Shao Y. H.: Nonsmooth sequential analysis in Asplund spaces. Trans. Amer. Math. Soc. 348 (4) (1996), 1235–1280. | MR | Zbl
[15] Phelps R. R.: Convex functions, Monotone Operators and Differentiability. Lecture Notes in Math., Berlin – Heidelberg – New York – London – Paris – Tokyo 1364 (1991).