Some properties on the closed subsets in Banach spaces
Archivum mathematicum, Tome 42 (2006) no. 2, pp. 167-174 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is shown that under natural assumptions, there exists a linear functional does not have supremum on a closed bounded subset. That is the James Theorem for non-convex bodies. Also, a non-linear version of the Bishop-Phelps Theorem and a geometrical version of the formula of the subdifferential of the sum of two functions are obtained.
It is shown that under natural assumptions, there exists a linear functional does not have supremum on a closed bounded subset. That is the James Theorem for non-convex bodies. Also, a non-linear version of the Bishop-Phelps Theorem and a geometrical version of the formula of the subdifferential of the sum of two functions are obtained.
Classification : 46B20, 49J52
Keywords: James Theorem; Bishop-Phelps Theorem; smooth variational principles
@article{ARM_2006_42_2_a7,
     author = {Maaden, Abdelhakim and Stouti, Abdelkader},
     title = {Some properties on the closed subsets in {Banach} spaces},
     journal = {Archivum mathematicum},
     pages = {167--174},
     year = {2006},
     volume = {42},
     number = {2},
     mrnumber = {2240354},
     zbl = {1164.46307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a7/}
}
TY  - JOUR
AU  - Maaden, Abdelhakim
AU  - Stouti, Abdelkader
TI  - Some properties on the closed subsets in Banach spaces
JO  - Archivum mathematicum
PY  - 2006
SP  - 167
EP  - 174
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a7/
LA  - en
ID  - ARM_2006_42_2_a7
ER  - 
%0 Journal Article
%A Maaden, Abdelhakim
%A Stouti, Abdelkader
%T Some properties on the closed subsets in Banach spaces
%J Archivum mathematicum
%D 2006
%P 167-174
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a7/
%G en
%F ARM_2006_42_2_a7
Maaden, Abdelhakim; Stouti, Abdelkader. Some properties on the closed subsets in Banach spaces. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 167-174. http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a7/

[1] Azagra D., Deville R.: James’ theorem fails for starlike bodies. J. Funct. Anal. 180 (2) (2001), 328–346. | MR | Zbl

[2] Bishop E., Phelps R. R.: The support cones in Banach spaces and their applications. Adv. Math. 13 (1974), 1–19. | MR

[3] Deville R., El Haddad E.: The subdifferential of the sum of two functions in Banach spaces, I. First order case. J. Convex Anal. 3 (2) (1996), 295–308. | MR

[4] Deville R., Godefroy G., Zizler V.: A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 111 (1993), 197–212. | MR | Zbl

[5] Deville R., Maaden A.: Smooth variational principles in Radon-Nikodým spaces. Bull. Austral. Math. Soc. 60 (1999), 109–118. | MR | Zbl

[6] Diestel J.: Geometry of Banach spaces - Selected topics. Lecture Notes in Math., Berlin – Heidelberg – New York 485 (1975). | MR | Zbl

[7] Fabian M., Mordukhovich B. S.: Separable reduction and extremal principles in variational analysis. Nonlinear Anal. 49 (2) (2002), 265–292. | MR | Zbl

[8] Haydon R.: A counterexample in several question about scattered compact spaces. Bull. London Math. Soc. 22 (1990), 261–268. | MR

[9] Ioffe A. D.: Proximal analysis and approximate subdifferentials. J. London Math. Soc. (2) 41 (1990), 175–192. | MR | Zbl

[10] James R. C.: Weakly compact sets. Trans. Amer. Math. Soc. 113 (1964), 129–140. | MR | Zbl

[11] Leduc M.: Densité de certaines familles d’hyperplans tangents. C. R. Acad. Sci. Paris, Sér. A 270 (1970), 326–328. | MR | Zbl

[12] Mordukhovich B. S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems. Sov. Math. Dokl. 22 (1980), 526–530. | Zbl

[13] Mordukhovich B. S., Shao Y. H.: Extremal characterizations of Asplund spaces. Proc. Amer. Math. Soc. 124 (1) (1996), 197–205. | MR | Zbl

[14] Mordukhovich B. S., Shao Y. H.: Nonsmooth sequential analysis in Asplund spaces. Trans. Amer. Math. Soc. 348 (4) (1996), 1235–1280. | MR | Zbl

[15] Phelps R. R.: Convex functions, Monotone Operators and Differentiability. Lecture Notes in Math., Berlin – Heidelberg – New York – London – Paris – Tokyo 1364 (1991).