Geometric structures on the tangent bundle of the Einstein spacetime
Archivum mathematicum, Tome 42 (2006) no. 2, pp. 195-203 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe conditions under which a spacetime connection and a scaled Lorentzian metric define natural symplectic and Poisson structures on the tangent bundle of the Einstein spacetime.
We describe conditions under which a spacetime connection and a scaled Lorentzian metric define natural symplectic and Poisson structures on the tangent bundle of the Einstein spacetime.
Classification : 53B15, 53B30, 53D05, 53D17
Keywords: spacetime; spacetime connection; Schouten bracket; Frölicher–Nijenhuis bracket; symplectic structure; Poisson structure
@article{ARM_2006_42_2_a10,
     author = {Jany\v{s}ka, Josef},
     title = {Geometric structures on the tangent bundle of the {Einstein} spacetime},
     journal = {Archivum mathematicum},
     pages = {195--203},
     year = {2006},
     volume = {42},
     number = {2},
     mrnumber = {2240357},
     zbl = {1164.53318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a10/}
}
TY  - JOUR
AU  - Janyška, Josef
TI  - Geometric structures on the tangent bundle of the Einstein spacetime
JO  - Archivum mathematicum
PY  - 2006
SP  - 195
EP  - 203
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a10/
LA  - en
ID  - ARM_2006_42_2_a10
ER  - 
%0 Journal Article
%A Janyška, Josef
%T Geometric structures on the tangent bundle of the Einstein spacetime
%J Archivum mathematicum
%D 2006
%P 195-203
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a10/
%G en
%F ARM_2006_42_2_a10
Janyška, Josef. Geometric structures on the tangent bundle of the Einstein spacetime. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 195-203. http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a10/

[1] Janyška J.: Remarks on symplectic and contact 2–forms in relativistic theories. Boll. Un. Mat. Ital. B (7) 9 (1995), 587–616. | MR | Zbl

[2] Janyška J.: Natural symplectic structures on the tangent bundle of a space–time. The Proceedings of the Winter School Geometry and Topology (Srní, 1995), Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 153–162. | MR

[3] Janyška J., Modugno M.: Classical particle phase space in general relativity. Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno 1996, 573–602. | MR

[4] Janyška J., Modugno M.: On quantum vector fields in general relativistic quantum mechanics. in: Proc. 3rd Internat. Workshop Differential Geom. Appl., Sibiu (Romania) 1997, General Mathematics 5 (1997), 199–217. | MR | Zbl

[5] Janyška J.: Natural Poisson and Jacobi structures on the tangent bundle of a pseudo-Riemannian manifold. Contemporary Mathematics 288 (2001), Global Differential Geom.: The Math. Legacy of Alfred Gray, eds. M. Fernándes and J. A. Wolf, 343–347. | MR | Zbl

[6] Janyška J.: Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold. Arch. Math. (Brno) 37 (2001), 143–160. | MR | Zbl

[7] Krupka D., Janyška J.: Lectures on Differential Invariants. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., 1990. | MR

[8] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer–Verlag 1993. | MR

[9] Libermann P., Marle, Ch. M.: Symplectic Geometry and Analytical Mechanics. Reidel Publ., Dordrecht 1987. | MR | Zbl

[10] Nijenhuis A.: Natural bundles and their general properties. Differential Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, 317–334. | MR | Zbl

[11] Vaisman I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag 1994. | MR | Zbl