Keywords: multifunction; convex subdifferential; extremal periodic solution; Moreanu-Yosida approximation.
@article{ARM_2006_42_2_a1,
author = {Filippakis, Michael E. and Papageorgiou, Nikolaos S.},
title = {Periodic solutions for differential inclusions in ${\Bbb R}^N$},
journal = {Archivum mathematicum},
pages = {115--123},
year = {2006},
volume = {42},
number = {2},
mrnumber = {2240188},
zbl = {1164.34320},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a1/}
}
Filippakis, Michael E.; Papageorgiou, Nikolaos S. Periodic solutions for differential inclusions in ${\Bbb R}^N$. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a1/
[1] Bader R.: A topological fixed point theory for evolutions inclusions. Z. Anal. Anwendungen 20 (2001), 3–15. | MR
[2] Bourgain J.: An averaging result for $l^1$-sequences and applications to weakly conditionally compact sets in $L^1(X)$. Israel J. Math. 32 (1979), 289–298. | MR
[3] Cornet B.: Existence of slow solutions for a class differential inclusions. J. Math. Anal. Appl. 96 (1983), 130–147. | MR
[4] De Blasi F. S., Gorniewicz L., Pianigiani G.: Topological degree and periodic solutions of differential inclusions. Nonlinear Anal. 37 (1999), 217–245. | MR | Zbl
[5] De Blasi F. S., Pianigiani G.: Nonconvex valued differential inclusions in Banach spaces. J. Math. Anal. Appl. 157 (1991), 469–494. | MR
[6] Haddad G., Lasry J.-M.: Periodic solutions of functional differential inclusions and fixed points of $\gamma $-selectionable correspondences. J. Math. Anal. Appl. 96 (1983), 295–312. | MR
[7] Halidias N., Papageorgiou N. S.: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R^N}$. J. Differential Equations 147 (1998), 123–154. | MR
[8] Henry C.: Differential equations with discontinuous right hand side for planning procedures. J. Econom. Theory 4 (1972), 545–551. | MR
[9] Hu S., Kandilakis D., Papageorgiou N. S.: Periodic solutions for nonconvex differential inclusions. Proc. Amer. Math. Soc. 127 (1999), 89–94. | MR | Zbl
[10] Hu S., Papageorgiou N. S.: On the existence of periodic solutions for nonconvex valued differential inclusions in $\mathbb{R^N}$. Proc. Amer. Math. Soc. 123 (1995), 3043–3050. | MR
[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands (1997). | MR | Zbl
[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, The Netherlands (2000). | MR | Zbl
[13] Li C., Xue X.: On the existence of periodic solutions for differential inclusions. J. Math. Anal. Appl. 276 (2002), 168–183. | MR | Zbl
[14] Macki J., Nistri P., Zecca P.: The existence of periodic solutions to nonautonomous differential inclusions. Proc. Amer. Math. Soc. 104 (1988), 840–844. | MR | Zbl
[15] Plaskacz S.: Periodic solutions of differential inclusions on compact subsets of $\mathbb{R^N}$. J. Math. Anal. Appl. 148 (1990), 202–212. | MR