Local interpolation by a quadratic Lagrange finite element in 1D
Archivum mathematicum, Tome 42 (2006) no. 2, pp. 103-114
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We analyse the error of interpolation of functions from the space $H^3(a,c)$ in the nodes $a
We analyse the error of interpolation of functions from the space $H^3(a,c)$ in the nodes $a$ of a regular quadratic Lagrange finite element in 1D by interpolants from the local function space of this finite element. We show that the order of the error depends on the way in which the mutual positions of nodes $a,b,c$ change as the length of interval $[a,c]$ approaches zero.
Classification : 41A05, 65D05, 65L60
Keywords: quadratic Lagrange finite elements in 1D; local interpolation of functions in one variable
@article{ARM_2006_42_2_a0,
     author = {Dal{\'\i}k, Josef},
     title = {Local interpolation by a quadratic {Lagrange} finite element in {1D}},
     journal = {Archivum mathematicum},
     pages = {103--114},
     year = {2006},
     volume = {42},
     number = {2},
     mrnumber = {2240186},
     zbl = {1164.65307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a0/}
}
TY  - JOUR
AU  - Dalík, Josef
TI  - Local interpolation by a quadratic Lagrange finite element in 1D
JO  - Archivum mathematicum
PY  - 2006
SP  - 103
EP  - 114
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a0/
LA  - en
ID  - ARM_2006_42_2_a0
ER  - 
%0 Journal Article
%A Dalík, Josef
%T Local interpolation by a quadratic Lagrange finite element in 1D
%J Archivum mathematicum
%D 2006
%P 103-114
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a0/
%G en
%F ARM_2006_42_2_a0
Dalík, Josef. Local interpolation by a quadratic Lagrange finite element in 1D. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 103-114. http://geodesic.mathdoc.fr/item/ARM_2006_42_2_a0/

[1] Hutson V. C. L., Pym J. S. : Applications of Functional Analysis and Operator Theory. Academic Press, London, 1980. | MR | Zbl

[2] Křížek M., Neittaanmäki P.: Finite Element Approximation of Variational Problems and Applications. Longman Scientific & Technical, Essex, 1990. | MR | Zbl

[3] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Masson et C${}^{ie}$, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967. | MR

[4] Rudin W.: Principles of Mathematical Analysis. McGraw-Hill, New York, 1964. | MR | Zbl

[5] Strang G., Fix G. J.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Clifs, N. J., 1973. | MR | Zbl

[6] Ženíšek A.: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990. | MR