Keywords: graphs; separoids; homomorphisms; universality; density; Radon’s theorem; oriented matroids; Hedetniemi’s conjecture
@article{ARM_2006_42_1_a8,
author = {Ne\v{s}et\v{r}il, Jaroslav and Strausz, Ricardo},
title = {Universality of separoids},
journal = {Archivum mathematicum},
pages = {85--101},
year = {2006},
volume = {42},
number = {1},
mrnumber = {2227115},
zbl = {1164.05468},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a8/}
}
Nešetřil, Jaroslav; Strausz, Ricardo. Universality of separoids. Archivum mathematicum, Tome 42 (2006) no. 1, pp. 85-101. http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a8/
[1] Arocha J. L., Bracho J., Montejano L., Oliveros D., Strausz R.: Separoids, their categories and a Hadwiger-type theorem. Discrete Comput. Geom. 27(3) (2002), 377–385. | MR | Zbl
[2] Björner A., Las Vergnas M., Sturmfels B., White N., Ziegler G.: Oriented Matroids. Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, 1993. | MR | Zbl
[3] Bracho J., Strausz R.: Separoids and a characterisation of linear uniform oriented matroids. KAM-DIMATIA Series, Charles University at Prague 17 2002.
[4] Hell P., Nešetřil J.: On the complexity of H-coloring. J. Combin. Theory, Ser. B 48(1) (1990), 92–110. An earlier version appeared in: Combinatorics, graph theory, and computing, Proc. 17th Southeast. Conf., Boca Raton/Fl. 1986, Congr. Numerantium 55, 284 (1986). | MR | Zbl
[5] Hell P., Nešetřil J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications 28, Oxford University Press, 2004. | MR
[6] Hochstättler W., Nešetřil J.: Linear programming duality and morphisms. Comment. Math. Univ. Carolin. 40(3) (1999), 577–592. | MR
[7] Las Vergnas M.: Matroïdes orientables. C. N. R. S. Paris, 1974.
[8] Montellano-Ballesteros J. J., Pór A., Strausz R.: Tverberg-type theorems for separoids. Discrete Comput. Geom. 35 (3) (2006), 513–523. | MR | Zbl
[9] Montellano-Ballesteros J. J., Strausz R.: A characterisation of cocircuit graphs of uniform oriented matroids. KAM-DIMATIA Series, Charles University at Prague 26 (565), 2002.
[10] Montellano-Ballesteros J. J., Strausz R.: Counting polytopes via the Radon complex. J. Combin. Theory Ser. A 106(1) (2004), 109–121. | MR | Zbl
[11] Nešetřil J., Tardif C.: Duality theorems for finite structures (characterising gaps and good characterisations). J. Combin. Theory Ser. B 80(1) (2000), 80–97. | MR | Zbl
[12] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories. North-Holland Mathematical Library 22, North-Holland Publishing Co., Amsterdam, 1980. | MR
[13] Radon J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83 (1921), 113–115. | MR
[14] Strausz R.: Separoides. Situs Ser. B, Universidad Nacional Autónoma de México 5(1998), 36–41.
[15] Strausz R.: Separoides: el complejo de Radon. Master’s thesis, Universidad Nacional Autónoma de México, 2001.
[16] Strausz R.: On Radon’s theorem and representation of separoids. ITI Series, Charles University at Prague 32 (118), (2003).
[17] Strausz R.: On Separoids. PhD thesis, Universidad Nacional Autónoma de México, 2004.