Best approximation for nonconvex set in $q$-normed space
Archivum mathematicum, Tome 42 (2006) no. 1, pp. 51-58
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some existence results on best approximation are proved without starshaped subset and affine mapping in the set up of $q$-normed space. First, we consider the closed subset and then weakly compact subsets for said purpose. Our results improve the result of Mukherjee and Som (Mukherjee, R. N., Som, T., A note on an application of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math. 16(3) (1985), 243–244.) and Jungck and Sessa (Jungck, G., Sessa, S., Fixed point theorems in best approximation theory, Math. Japonica 42(2) (1995), 249–252.) and some known results (Dotson,W. G., Jr., On fixed point of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38(1) (1973), 155–156.), (Latif, A., A result on best approximation in p-normed spaces, Arch. Math. (Brno) 37 (2001), 71–75.), (Nashine,H. K., Common fixed point for best approximation for semi-convex structure, Bull. Kerala Math. Assoc. (communicated).) are obtained as consequence. To achieve our goal, we have introduced a property known as “Property(A)”.
Some existence results on best approximation are proved without starshaped subset and affine mapping in the set up of $q$-normed space. First, we consider the closed subset and then weakly compact subsets for said purpose. Our results improve the result of Mukherjee and Som (Mukherjee, R. N., Som, T., A note on an application of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math. 16(3) (1985), 243–244.) and Jungck and Sessa (Jungck, G., Sessa, S., Fixed point theorems in best approximation theory, Math. Japonica 42(2) (1995), 249–252.) and some known results (Dotson,W. G., Jr., On fixed point of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38(1) (1973), 155–156.), (Latif, A., A result on best approximation in p-normed spaces, Arch. Math. (Brno) 37 (2001), 71–75.), (Nashine,H. K., Common fixed point for best approximation for semi-convex structure, Bull. Kerala Math. Assoc. (communicated).) are obtained as consequence. To achieve our goal, we have introduced a property known as “Property(A)”.
Classification : 41A50, 41A65, 46B20, 47H10, 54H25
Keywords: Best approximation; demiclosed mapping; fixed point; $I$-nonexpansive mapping; $q$-normed space
@article{ARM_2006_42_1_a5,
     author = {Nashine, Hemant Kumar},
     title = {Best approximation for nonconvex set in $q$-normed space},
     journal = {Archivum mathematicum},
     pages = {51--58},
     year = {2006},
     volume = {42},
     number = {1},
     mrnumber = {2227112},
     zbl = {1164.41347},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a5/}
}
TY  - JOUR
AU  - Nashine, Hemant Kumar
TI  - Best approximation for nonconvex set in $q$-normed space
JO  - Archivum mathematicum
PY  - 2006
SP  - 51
EP  - 58
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a5/
LA  - en
ID  - ARM_2006_42_1_a5
ER  - 
%0 Journal Article
%A Nashine, Hemant Kumar
%T Best approximation for nonconvex set in $q$-normed space
%J Archivum mathematicum
%D 2006
%P 51-58
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a5/
%G en
%F ARM_2006_42_1_a5
Nashine, Hemant Kumar. Best approximation for nonconvex set in $q$-normed space. Archivum mathematicum, Tome 42 (2006) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a5/

[1] Brosowski B.: Fixpunktsatze in der Approximationstheorie. Mathematica (Cluj) 11 (1969), 165–220. | MR

[2] Carbone A.: Some results on invariant approximation. Internat. J. Math. Math. Soc. 17(3) (1994), 483–488. | MR | Zbl

[3] Dotson W. G.: Fixed point theorems for nonexpasive mappings on starshaped subsets of Banach space. J. London Math. Soc. 4(2) (1972), 408–410. | MR

[4] Dotson W. G., Jr.: On fixed point of nonexpansive mappings in nonconvex sets. Proc. Amer. Math. Soc. 38(1) (1973), 155–156. | MR

[5] Hicks T. L., Humpheries M. D.: A note on fixed point theorems. J. Approx. Theory 34 (1982), 221–225. | MR

[6] Jungck G.: An iff fixed point criterion. Math. Mag. 49(1) (1976), 32–34. | MR | Zbl

[7] Jungck G., Sessa S.: Fixed point theorems in best approximation theory. Math. Japonica 42(2) (1995), 249–252. | MR | Zbl

[8] Köthe G.: Topological vector spaces I. Springer-Verlag, Berlin 1969. | MR

[9] Latif A.: A result on best approximation in p-normed spaces. Arch. Math. (Brno) 37 (2001), 71–75. | MR | Zbl

[10] Meinardus G.: Invarianze bei linearen Approximationen. Arch. Rational Mech. Anal. 14 (1963), 301–303. | MR

[11] Mukherjee R. N., Som T.: A note on an application of a fixed point theorem in approximation theory. Indian J. Pure Appl. Math. 16(3) (1985), 243–244. | MR | Zbl

[12] Nashine H. K.: Common fixed point for best approximation for semi-convex structure. Bull. Kerala Math. Assoc. (communicated).

[13] Park S.: Fixed points of f-contractive maps. Rocky Mountain J. Math. 8(4) (1978), 743–750. | MR | Zbl

[14] Sahab S. A., Khan M. S., Sessa S.: A result in best approximation theory. J. Approx. Theory 55 (1988), 349–351. | MR | Zbl

[15] Singh S. P.: An application of a fixed point theorem to approximation theory. J. Approx. Theory 25 (1979), 89–90. | MR | Zbl

[16] Singh S. P.: Application of fixed point theorems to approximation theory. in: V. Lakshmikantam (Ed.), Applied Nonlinear Analysis, Academic Press, New York 1979. | MR

[17] Singh S. P.: Some results on best approximation in locally convex spaces. J. Approx. Theory 28 (1980), 329–332. | MR | Zbl

[18] Singh S. P., Watson B., Srivastava P.,: Fixed point theory and best approximation: The KKM-map principle. Vol. 424, Kluwer Academic Publishers 1997. | MR | Zbl

[19] Smoluk A.: Invariant approximations. Mat. Stos. 17 (1981), 17–22 [in Polish]. | MR

[20] Subrahmanyam P. V.: An application of a fixed point theorem to best approximations. J. Approx. Theory 20 (1977), 165–172. | MR

[21] Opial Z.: Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 531–537. | MR