On integers with a special divisibility property
Archivum mathematicum, Tome 42 (2006) no. 1, pp. 31-42 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note, we study those positive integers $n$ which are divisible by $\sum _{d|n}\lambda (d)$, where $\lambda (\cdot )$ is the Carmichael function.
In this note, we study those positive integers $n$ which are divisible by $\sum _{d|n}\lambda (d)$, where $\lambda (\cdot )$ is the Carmichael function.
Classification : 11N37
Keywords: Euler function; Carmichael function
@article{ARM_2006_42_1_a3,
     author = {Banks, William D. and Luca, Florian},
     title = {On integers with a special divisibility property},
     journal = {Archivum mathematicum},
     pages = {31--42},
     year = {2006},
     volume = {42},
     number = {1},
     mrnumber = {2227110},
     zbl = {1164.11050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a3/}
}
TY  - JOUR
AU  - Banks, William D.
AU  - Luca, Florian
TI  - On integers with a special divisibility property
JO  - Archivum mathematicum
PY  - 2006
SP  - 31
EP  - 42
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a3/
LA  - en
ID  - ARM_2006_42_1_a3
ER  - 
%0 Journal Article
%A Banks, William D.
%A Luca, Florian
%T On integers with a special divisibility property
%J Archivum mathematicum
%D 2006
%P 31-42
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a3/
%G en
%F ARM_2006_42_1_a3
Banks, William D.; Luca, Florian. On integers with a special divisibility property. Archivum mathematicum, Tome 42 (2006) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a3/

[1] Bang A. S.: Taltheoretiske Undersøgelser. Tidsskrift Mat. 4 (5) (1886), 70–80, 130–137.

[2] De Koninck J. M., Luca F.: Positive integers divisible by the sum of their prime factors. Mathematika, to appear. | MR

[3] Dickson L. E.: A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. 33 (1904), 155–161.

[4] Hardy G. H., Littlewood J. E.: Some problems on partitio numerorum III. On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70. | MR

[5] Ivić A.: The Riemann-Zeta Function, Theory and Applications. Dover Publications, Mineola, New York, 2003. | MR | Zbl

[6] Luca F., Pomerance C.: On the number of divisors of the Euler function. Publ. Math. Debrecen, to appear. | MR

[7] Tenenbaum G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press, 1995. | MR | Zbl