Keywords: Lebesgue (signed) measure; polynomial; random vector; real affine variety
@article{ARM_2006_42_1_a2,
author = {Golasi\'nski, Marek},
title = {On generalized {\textquotedblleft}ham sandwich{\textquotedblright} theorems},
journal = {Archivum mathematicum},
pages = {25--30},
year = {2006},
volume = {42},
number = {1},
mrnumber = {2227109},
zbl = {1164.58312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a2/}
}
Golasiński, Marek. On generalized “ham sandwich” theorems. Archivum mathematicum, Tome 42 (2006) no. 1, pp. 25-30. http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a2/
[1] Arens R.: On sandwich slicing. Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. | MR
[2] Borsuk K.: Drei Sätze über die $n$-dimensionale euklidische Sphäre. Fund. Math. 20 (1933), 177–190. | Zbl
[3] Dugundij J., Granas A.: Fixed point theory, Vol.I. Monografie Matematyczne 61, PWN, Warsaw 1982.
[4] Gray B.: Homotopy theory. New York, San Francisco, London 1975. | MR | Zbl
[5] Halmos P. R.: Measure theory. Toronto, New York, London 1950. | MR | Zbl
[6] Hill T.: Hyperplane medians for random vectors. Amer. Math. Monthly 95 (5) (1988), 437–441. | MR | Zbl
[7] Hobby C. R., Rice J. R.: A moment problem in $L_1$-approximation. Proc. Amer. Math. Soc. 16 (1965), 665–670. | MR
[8] Pinkus A.: A simple proof of the Hobby-Rice theorem. Proc. Amer. Math. Soc. 60 (1976), 82–84. | MR
[9] Peters J. V.: The ham sandwich theorem for some related results. Rocky Mountain J. Math. 11 (3) (1981), 473–482. | MR
[10] Steinhaus H.: Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles. Fund. Math. 33 (1945), 245–263. | MR | Zbl
[11] Steinhaus H.: Kalejdoskop matematyczny. PWN, Warszawa (1956).
[12] Steinlein H.: Spheres and symmetry, Borsuk’s antipodal theorem. Topol. Methods Nonlinear Anal. 1 (1993), 15–33. | MR | Zbl
[13] Stone A., Tukey J. W.: Generalized “sandwich” theorems. Duke Math. J. 9 (1942), 356–359. | MR | Zbl