On generalized “ham sandwich” theorems
Archivum mathematicum, Tome 42 (2006) no. 1, pp. 25-30 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.
In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.
Classification : 12D10, 14P05, 58C07
Keywords: Lebesgue (signed) measure; polynomial; random vector; real affine variety
@article{ARM_2006_42_1_a2,
     author = {Golasi\'nski, Marek},
     title = {On generalized {\textquotedblleft}ham sandwich{\textquotedblright} theorems},
     journal = {Archivum mathematicum},
     pages = {25--30},
     year = {2006},
     volume = {42},
     number = {1},
     mrnumber = {2227109},
     zbl = {1164.58312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a2/}
}
TY  - JOUR
AU  - Golasiński, Marek
TI  - On generalized “ham sandwich” theorems
JO  - Archivum mathematicum
PY  - 2006
SP  - 25
EP  - 30
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a2/
LA  - en
ID  - ARM_2006_42_1_a2
ER  - 
%0 Journal Article
%A Golasiński, Marek
%T On generalized “ham sandwich” theorems
%J Archivum mathematicum
%D 2006
%P 25-30
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a2/
%G en
%F ARM_2006_42_1_a2
Golasiński, Marek. On generalized “ham sandwich” theorems. Archivum mathematicum, Tome 42 (2006) no. 1, pp. 25-30. http://geodesic.mathdoc.fr/item/ARM_2006_42_1_a2/

[1] Arens R.: On sandwich slicing. Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. | MR

[2] Borsuk K.: Drei Sätze über die $n$-dimensionale euklidische Sphäre. Fund. Math. 20 (1933), 177–190. | Zbl

[3] Dugundij J., Granas A.: Fixed point theory, Vol.I. Monografie Matematyczne 61, PWN, Warsaw 1982.

[4] Gray B.: Homotopy theory. New York, San Francisco, London 1975. | MR | Zbl

[5] Halmos P. R.: Measure theory. Toronto, New York, London 1950. | MR | Zbl

[6] Hill T.: Hyperplane medians for random vectors. Amer. Math. Monthly 95 (5) (1988), 437–441. | MR | Zbl

[7] Hobby C. R., Rice J. R.: A moment problem in $L_1$-approximation. Proc. Amer. Math. Soc. 16 (1965), 665–670. | MR

[8] Pinkus A.: A simple proof of the Hobby-Rice theorem. Proc. Amer. Math. Soc. 60 (1976), 82–84. | MR

[9] Peters J. V.: The ham sandwich theorem for some related results. Rocky Mountain J. Math. 11 (3) (1981), 473–482. | MR

[10] Steinhaus H.: Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles. Fund. Math. 33 (1945), 245–263. | MR | Zbl

[11] Steinhaus H.: Kalejdoskop matematyczny. PWN, Warszawa (1956).

[12] Steinlein H.: Spheres and symmetry, Borsuk’s antipodal theorem. Topol. Methods Nonlinear Anal. 1 (1993), 15–33. | MR | Zbl

[13] Stone A., Tukey J. W.: Generalized “sandwich” theorems. Duke Math. J. 9 (1942), 356–359. | MR | Zbl