Generalizations of the Fan-Browder fixed point theorem and minimax inequalities
Archivum mathematicum, Tome 41 (2005) no. 4, pp. 399-407 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper fixed point theorems for maps with nonempty convex values and having the local intersection property are given. As applications several minimax inequalities are obtained.
In this paper fixed point theorems for maps with nonempty convex values and having the local intersection property are given. As applications several minimax inequalities are obtained.
Classification : 47H10, 49J35, 54C60, 54H25
Keywords: map; fixed point; local intersection property; minimax inequality
@article{ARM_2005_41_4_a4,
     author = {Balaj, Mircea and Muresan, Sorin},
     title = {Generalizations of the {Fan-Browder} fixed point theorem and minimax inequalities},
     journal = {Archivum mathematicum},
     pages = {399--407},
     year = {2005},
     volume = {41},
     number = {4},
     mrnumber = {2195493},
     zbl = {1111.54032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a4/}
}
TY  - JOUR
AU  - Balaj, Mircea
AU  - Muresan, Sorin
TI  - Generalizations of the Fan-Browder fixed point theorem and minimax inequalities
JO  - Archivum mathematicum
PY  - 2005
SP  - 399
EP  - 407
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a4/
LA  - en
ID  - ARM_2005_41_4_a4
ER  - 
%0 Journal Article
%A Balaj, Mircea
%A Muresan, Sorin
%T Generalizations of the Fan-Browder fixed point theorem and minimax inequalities
%J Archivum mathematicum
%D 2005
%P 399-407
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a4/
%G en
%F ARM_2005_41_4_a4
Balaj, Mircea; Muresan, Sorin. Generalizations of the Fan-Browder fixed point theorem and minimax inequalities. Archivum mathematicum, Tome 41 (2005) no. 4, pp. 399-407. http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a4/

[1] Balaj M.: A variant of a fixed point theorem of Browder and some applications. Math. Montisnigri 9 (1998), 5–13. | MR | Zbl

[2] Balaj M.: Applications of two matching theorems in generalized convex spaces. Nonlinear Anal. Forum 7 (2002), 123–130. | MR | Zbl

[3] Ben-El-Mechaiekh H., Deguire P., Granas A.: Point fixes et coincidences pour les applications multivoques. C. R. Acad. Sci. Paris 295 (1982), I 337–340, II 381–384.

[4] Browder F. E.: The fixed point theory of multivalued mappings in topological vector spaces. Math. Ann. 177 (1968), 238–301. | MR

[5] Browder F. E.: Coincidence theorems, minimax theorems and variational inequalities. Conference in Modern Analysis and Probability, New Heaven, Conn., 1982: Contemp. Math. 26, pp. 67–80 (Amer. Math. Soc. Providence, RI., 1984). | MR

[6] Deguire P.: Browder-Fan fixed point theorem and related results. Discuss. Math. Differential Incl. 15 (1995), 149–162. | MR | Zbl

[7] Deguire P., Lassonde M.: Families sélectantes. Topol. Methods Nonlinear Anal. 5 (1995), 261–269. | MR

[8] Ding X. P.: New H-KKM theorems and equilibria of generalized games. Indian J. Pure Appl. Math. 27 (1996), 1057–1071. | MR

[9] Ding X. P.: A coincidence theorem involving contractible spaces. Appl. Math. Lett. 10 (1997), 53–56. | MR | Zbl

[10] Fan K.: A generalization of Tichonoff’s fixed point theorems. Math. Ann. 142 (1961), 305–310. | MR

[11] Fan K.: Sur une théorème minimax. C.R. Acad. Sci. Paris 259 (1964), 3925–3928. | MR

[12] Fan K.: A minimax inequality and applications. In: Inequalities III (O. Shisha, ed.), pp. 103–113, Academic Press, New York, 1972. | MR | Zbl

[13] Himmelberg C. J.: Fixed points of compact multifunctions. J. Math. Anal. Appl. 38 (1972), 205–207. | MR | Zbl

[14] Lan K., Webb J.: New fixed point theorems for a family of mappings and applications to problems on set with convex sections. Proc. Amer. Math. Soc. 126 (1998), 1127–1132. | MR

[15] Lassonde M.: On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl. 97 (1983), 151–201. | MR | Zbl

[16] Mehta G.: Fixed points, equilibria and maximal elements in linear topological spaces. Comment. Math. Univ. Carolin. 28 (1987), 377–385. | MR | Zbl

[17] Park S.: Generalized Fan-Browder fixed point theorems and their applications. In: Collection of Papers Dedicated to J. G. Park (1989), 164–176. | MR

[18] Sion M.: On general minimax theorems. Pacific J. Math. 8 (1958), 171–176. | MR | Zbl

[19] Tarafdar E.: On nonlinear variational variational inequalities. Proc. Amer. Math. Soc. 67 (1977), 95–98. | MR

[20] Wu X., Shen S.: A further generalization of Yannelis-Prabhakar’s continous selection theorem and its applications. J. Math. Anal. Appl. 197 (1996), 61–74. | MR

[21] Yannelis N. C., Prabhakar N. D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econom. 12 (1983), 233–245. | MR | Zbl