Fixed points and best approximation in Menger convex metric spaces
Archivum mathematicum, Tome 41 (2005) no. 4, pp. 389-397 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain necessary conditions for the existence of fixed point and approximate fixed point of nonexpansive and quasi nonexpansive maps defined on a compact convex subset of a uniformly convex complete metric space. We obtain results on best approximation as a fixed point in a strictly convex metric space.
We obtain necessary conditions for the existence of fixed point and approximate fixed point of nonexpansive and quasi nonexpansive maps defined on a compact convex subset of a uniformly convex complete metric space. We obtain results on best approximation as a fixed point in a strictly convex metric space.
Classification : 47H09, 47H10, 54H25
Keywords: fixed point; convex metric space; uniformly convex metric space; strictly convex metric space; best approximation; nonexpansive map
@article{ARM_2005_41_4_a3,
     author = {Beg, Ismat and Abbas, Mujahid},
     title = {Fixed points and best approximation in {Menger} convex metric spaces},
     journal = {Archivum mathematicum},
     pages = {389--397},
     year = {2005},
     volume = {41},
     number = {4},
     mrnumber = {2195492},
     zbl = {1109.47047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a3/}
}
TY  - JOUR
AU  - Beg, Ismat
AU  - Abbas, Mujahid
TI  - Fixed points and best approximation in Menger convex metric spaces
JO  - Archivum mathematicum
PY  - 2005
SP  - 389
EP  - 397
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a3/
LA  - en
ID  - ARM_2005_41_4_a3
ER  - 
%0 Journal Article
%A Beg, Ismat
%A Abbas, Mujahid
%T Fixed points and best approximation in Menger convex metric spaces
%J Archivum mathematicum
%D 2005
%P 389-397
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a3/
%G en
%F ARM_2005_41_4_a3
Beg, Ismat; Abbas, Mujahid. Fixed points and best approximation in Menger convex metric spaces. Archivum mathematicum, Tome 41 (2005) no. 4, pp. 389-397. http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a3/

[1] Aksoy A. G., Khamsi M. A.: Nonstandard methods in fixed point theory. Springer, New York, Berlin, 1990. | MR | Zbl

[2] Aronszajn N., Panitchpakdi P.: Extension of uniformly continuous transformations and hyper convex metric spaces. Pacific J. Math. 6 (1956), 405–439. | MR

[3] Ayerbe Toledano J. M., Dominguez Benavides T., Lopez Acedo G.: Measures of noncompactness in metric fixed point theory. Birkhauser, Basel, 1997. | MR | Zbl

[4] Beg I., Azam A.: Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. Ser. A 53(3) (1992), 313–326. | MR | Zbl

[5] Beg I., Azam A.: Common fixed points for commuting and compatible maps. Discuss. Math. Differential Incl. 16 (1996), 121–135. | MR | Zbl

[6] Berard A.: Characterization of metric spaces by the use of their mid sets intervals. Fund. Math. 73 (1971), 1–7. | MR

[7] Blumenthal L. M.: Distance Geometry. Clarendon Press, Oxford, 1953. | MR | Zbl

[8] Browder F. E.: Nonexpansive nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. | MR

[9] Dotson W. G.: On fixed points of nonexpansive mappings in non convex sets. Proc. Amer. Math. Soc. 38 (1973), 155–156. | MR

[10] Goeble K., Kirk W. A.: Topics in metric fixed point theory. Cambridge Stud. Adv. Math. 28, Cambridge University Press, London, 1990. | MR

[11] Goeble K., Reich S.: Uniform convexity, hyperolic geometry, and nonexpansive mappings. Marcel Dekker, Inc. New York and Basel (1984). | MR

[12] Gohde D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30 (1995), 251–258. | MR

[13] Habiniak L.: Fixed point theorem and invarient approximation. J. Approx. Theory 56 (1984), 241–244.

[14] Hadzic O.: Almost fixed point and best approximation theorems in H-Spaces. Bull. Austral. Math. Soc. 53 (1996), 447–454. | MR

[15] Khalil R.: Extreme points of the unit ball of Banach spaces. Math. Rep. Toyama Univ. 4 (1981), 41–45. | MR | Zbl

[16] Khalil R.: Best approximation in metric spaces. Proc. Amer. Math. Soc. 103 (1988), 579–586. | MR | Zbl

[17] Kirk W. A.: A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004–1006. | MR | Zbl

[18] Menger K.: Untersuchungen über allegemeine Metrik. Math. Ann. 100 (1928), 75–63. | MR

[19] Prus B., Smarzewski R. S.: Strongly unique best approximation and centers in uniformly convex spaces. J. Math. Anal. Appl. 121 (1978), 85–92. | MR

[20] Veeramani P.: On some fixed point theorems on uniformly convex Banach spaces. J. Math. Anal. Appl. 167 (1992), 160–166. | MR | Zbl