On the existence of solutions of some second order nonlinear difference equations
Archivum mathematicum, Tome 41 (2005) no. 4, pp. 379-388 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a second order nonlinear difference equation \[ \Delta ^2 y_n = a_n y_{n+1} + f(n,y_n,y_{n+1})\,,\quad n\in N\,. \qquad \mathrm {(\mbox{E})}\] The necessary conditions under which there exists a solution of equation (E) which can be written in the form \[ y_{n+1} = \alpha _{n}{u_n} + \beta _{n}{v_n}\,,\quad \mbox{are given.} \] Here $u$ and $v$ are two linearly independent solutions of equation \[ \Delta ^2 y_n = a_{n+1} y_{n+1}\,, \quad ({\lim \limits _{n \rightarrow \infty } \alpha _{n} = \alpha \infty } \quad {\rm and} \quad {\lim \limits _{n \rightarrow \infty } \beta _{n} = \beta \infty })\,. \] A special case of equation (E) is also considered.
We consider a second order nonlinear difference equation \[ \Delta ^2 y_n = a_n y_{n+1} + f(n,y_n,y_{n+1})\,,\quad n\in N\,. \qquad \mathrm {(\mbox{E})}\] The necessary conditions under which there exists a solution of equation (E) which can be written in the form \[ y_{n+1} = \alpha _{n}{u_n} + \beta _{n}{v_n}\,,\quad \mbox{are given.} \] Here $u$ and $v$ are two linearly independent solutions of equation \[ \Delta ^2 y_n = a_{n+1} y_{n+1}\,, \quad ({\lim \limits _{n \rightarrow \infty } \alpha _{n} = \alpha \infty } \quad {\rm and} \quad {\lim \limits _{n \rightarrow \infty } \beta _{n} = \beta \infty })\,. \] A special case of equation (E) is also considered.
Classification : 39A10, 39A11
Keywords: nonlinear difference equation; nonoscillatory solution; second order
@article{ARM_2005_41_4_a2,
     author = {Migda, Ma{\l}gorzata and Schmeidel, Ewa and Zb\k{a}szyniak, Ma{\l}gorzata},
     title = {On the existence of solutions of some second order nonlinear difference equations},
     journal = {Archivum mathematicum},
     pages = {379--388},
     year = {2005},
     volume = {41},
     number = {4},
     mrnumber = {2195491},
     zbl = {1122.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a2/}
}
TY  - JOUR
AU  - Migda, Małgorzata
AU  - Schmeidel, Ewa
AU  - Zbąszyniak, Małgorzata
TI  - On the existence of solutions of some second order nonlinear difference equations
JO  - Archivum mathematicum
PY  - 2005
SP  - 379
EP  - 388
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a2/
LA  - en
ID  - ARM_2005_41_4_a2
ER  - 
%0 Journal Article
%A Migda, Małgorzata
%A Schmeidel, Ewa
%A Zbąszyniak, Małgorzata
%T On the existence of solutions of some second order nonlinear difference equations
%J Archivum mathematicum
%D 2005
%P 379-388
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a2/
%G en
%F ARM_2005_41_4_a2
Migda, Małgorzata; Schmeidel, Ewa; Zbąszyniak, Małgorzata. On the existence of solutions of some second order nonlinear difference equations. Archivum mathematicum, Tome 41 (2005) no. 4, pp. 379-388. http://geodesic.mathdoc.fr/item/ARM_2005_41_4_a2/

[1] Agarwal R. P.: Difference equations and inequalities. Theory, methods and applications. Marcel Dekker, Inc., New York 1992. | MR | Zbl

[2] Cheng S. S., Li H. J., Patula W. T.: Bounded and zero convergent solutions of second order difference equations. J. Math. Anal. Appl. 141 (1989), 463–483. | MR

[3] Drozdowicz A.: On the asymptotic behavior of solutions of the second order difference equations. Glas. Mat. 22 (1987), 327–333.

[4] Elaydi S. N.: An introduction to difference equation. Springer-Verlag, New York 1996. | MR

[5] Kelly W. G., Peterson A. C.: Difference equations. Academic Press, Inc., Boston-San Diego 1991. | MR

[6] Medina R., Pinto M.: Asymptotic behavior of solutions of second order nonlinear difference equations. Nonlinear Anal. 19 (1992), 187–195. | MR | Zbl

[7] Migda J., Migda M.: Asymptotic properties of the solutions of second order difference equation. Arch. Math. (Brno) 34 (1998), 467–476. | MR

[8] Migda M.: Asymptotic behavior of solutions of nonlinear delay difference equations. Fasc. Math. 31 (2001), 57–62. | MR

[9] Migda M., Schmeidel E., Zbąszyniak M.: Some properties of solutions of second order nonlinear difference equations. Funct. Differ. Equ. 11 (2004), 147–152. | MR

[10] Popenda J., Werbowski J.: On the asymptotic behavior of the solutions of difference equations of second order. Ann. Polon. Math. 22 (1980), 135–142. | MR

[11] Schmeidel E.: Asymptotic behaviour of solutions of the second order difference equations. Demonstratio Math. 25 (1993), 811–819. | MR | Zbl

[12] Thandapani E., Arul R., Graef J. R., Spikes P. W.: Asymptotic behavior of solutions of second order difference equations with summable coefficients. Bull. Inst. Math. Acad. Sinica 27 (1999), 1–22. | MR | Zbl

[13] Thandapani E., Manuel M. M. S., Graef J. R., Spikes P. W.: Monotone properties of certain classes of solutions of second order difference equations, Advances in difference equations II. Comput. Math. Appl. 36 (1998), 291–297. | MR