Keywords: measure of noncompactness; fixed point theorem; monotonic solutions
@article{ARM_2005_41_3_a7,
author = {Caballero, J. and O'Regan, D. and Sadarangani, K. B.},
title = {On monotonic solutions of some integral equations},
journal = {Archivum mathematicum},
pages = {325--338},
year = {2005},
volume = {41},
number = {3},
mrnumber = {2188387},
zbl = {1122.45008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a7/}
}
Caballero, J.; O'Regan, D.; Sadarangani, K. B. On monotonic solutions of some integral equations. Archivum mathematicum, Tome 41 (2005) no. 3, pp. 325-338. http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a7/
[1] Argyros I. K.: On a class of quadratic integral equations with perturbations. Funct. Approx. Comment. Math. 20 (1992), 51–63. | MR
[2] Banás J., Goebel K.: Measures of noncompactness in Banach Spaces. Marcel Dekker, New York and Basel 1980. | MR | Zbl
[3] Banás J., Olszowy L.: Measures of noncompactness related to monotonicity. Ann. Soc. Math. Pol., Commentat. Math. 41 (2001), 13–23. | MR | Zbl
[4] Banás J., Rodríguez J. R., Sadarangani K.: On a class of Urysohn-Stieltjes quadratic integral equations and their applications. J. Comput. Appl. Math. 113 (2000), 35–50. | MR | Zbl
[5] Busbridge I. W.: On the $H$-function of Chandrasekhar. Quart. J. Math. Oxford Ser. (2) 8 (1957), 133–140. | MR
[6] Chandrasekhar S.: The transfer of radiation in stellar atmospheres. Bull. Amer. Math. Soc. 53 (1947), 641–711. | MR
[7] Chandrasekhar S.: Radiative Transfer. Oxford Univ. Press London, 1950. | MR | Zbl
[8] Crum M.: On an integral equation of Chandrasekhar. Quart. J. Math. Oxford Ser. (2) 18 (1947), 244–252. | MR | Zbl
[9] Darbo G.: Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Mat. Univ. Padova 24 (1955), 84–92. | MR
[10] Dunford N., Schwartz J.: Linear Operators I. Int. Publ. Leyden, 1963.
[11] Kelly C.: Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Equations 4 (1982), 221–237. | MR
[12] Kuratowski K.: Sur les espaces completes. Fund. Math. 15 (1930), 301–309.
[13] Natanson I.: Theory of functions of a real variable. Ungar, New York, 1960.