On the degeneration of harmonic sequences from surfaces into complex Grassmann manifolds
Archivum mathematicum, Tome 41 (2005) no. 3, pp. 273-280 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $f:M\rightarrow G(m,n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by $f$ to have degenerate $\partial ^{\prime }$-transform or $\partial ^{\prime \prime }$-transform are given.
Let $f:M\rightarrow G(m,n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by $f$ to have degenerate $\partial ^{\prime }$-transform or $\partial ^{\prime \prime }$-transform are given.
Classification : 53B30, 53C42, 53C43, 58E20
Keywords: complex Grassmann manifold; harmonic map; harmonic sequence; genus; the generalized Frenet formulae
@article{ARM_2005_41_3_a3,
     author = {Ye, Bing Wu},
     title = {On the degeneration of harmonic sequences from surfaces into complex {Grassmann} manifolds},
     journal = {Archivum mathematicum},
     pages = {273--280},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2188383},
     zbl = {1114.53058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a3/}
}
TY  - JOUR
AU  - Ye, Bing Wu
TI  - On the degeneration of harmonic sequences from surfaces into complex Grassmann manifolds
JO  - Archivum mathematicum
PY  - 2005
SP  - 273
EP  - 280
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a3/
LA  - en
ID  - ARM_2005_41_3_a3
ER  - 
%0 Journal Article
%A Ye, Bing Wu
%T On the degeneration of harmonic sequences from surfaces into complex Grassmann manifolds
%J Archivum mathematicum
%D 2005
%P 273-280
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a3/
%G en
%F ARM_2005_41_3_a3
Ye, Bing Wu. On the degeneration of harmonic sequences from surfaces into complex Grassmann manifolds. Archivum mathematicum, Tome 41 (2005) no. 3, pp. 273-280. http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a3/

[1] Chern S. S., Wolfson J. G.: Harmonic maps of the two-spheres into a complex Grassmann manifold II. Ann. Math. 125 (1987), 301–335. | MR

[2] Wolfson J. G.: Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds. J. Diff. Geom. 27 (1988), 161–178. | MR

[3] Liao R.: Cyclic properties of the harmonic sequence of surfaces in CP$^{n}$. Math. Ann. 296 (1993), 363–384. | MR

[4] Dong Y. X.: On the isotropy of harmonic maps from surfaces to complex projective spaces. Inter. J. Math. 3 (1992), 165–177. | MR | Zbl

[5] Jensen G. R., Rigoli M.: On the isotropy of compact minimal surfaces in CP$^{n}$. Math. Z. 200 (1989), 169–180. | MR

[6] Burstall F. E., Wood J. C.: The construction of harmonic maps into complex Grassmannian. J. Diff. Geom. 23 (1986), 255–297. | MR

[7] Uhlenbeck K.: Harmonic maps into Lie groups (classical solutions of the chiral model. J. Diff. Geom. 30 (1989), 1–50. | MR | Zbl

[8] Shen Y. B., Dong Y. X.: On pseudo-holomorphic curves in complex Grassmannian. Chin. Ann. Math. 20B (1999), 341–350. | MR

[9] Eschenburg J. H., Guadalupe I. V., Tribuzy R. A.: The fundamental equations of minimal surfaces in CP$^{2}$. Math. Ann. 270 (1985), 571–598. | MR

[10] Eells J., Wood J. C.: Harmonic maps from surfaces to complex projective spaces. Adv. Math. 49 (1983), 217–263. | MR | Zbl