Keywords: countable factor-groups; $\Sigma $-groups; $\sigma $-summable groups; summable groups; $p^{\omega + n}$-projective groups
@article{ARM_2005_41_3_a2,
author = {Danchev, Peter},
title = {Countable extensions of torsion {Abelian} groups},
journal = {Archivum mathematicum},
pages = {265--272},
year = {2005},
volume = {41},
number = {3},
mrnumber = {2188382},
zbl = {1114.20030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a2/}
}
Danchev, Peter. Countable extensions of torsion Abelian groups. Archivum mathematicum, Tome 41 (2005) no. 3, pp. 265-272. http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a2/
[1] Danchev P. V.: Commutative group algebras of $\sigma $-summable abelian groups. Proc. Amer. Math. Soc. (9) 125 (1997), 2559–2564. | MR | Zbl
[2] Danchev P. V.: Commutative group algebras of abelian $\Sigma $-groups. Math. J. Okayama Univ. 40 (1998), 77–90. | MR
[3] Danchev P. V.: Commutative group algebras of highly torsion-complete abelian $p$-groups. Comment. Math. Univ. Carolin. (4) 44 (2003), 587–592. | MR | Zbl
[4] Danchev P. V.: Commutative group algebras of summable abelian $p$-groups. Comm. Algebra, in press.
[5] Danchev P. V.: Generalized Dieudonné criterion. Acta Math. Univ. Comenian. (1) 74 (2005), 15–24. | MR | Zbl
[6] Fuchs L.: Infinite Abelian Groups. Volumes I and II, Mir, Moskva, 1974 and 1977. (In Russian.) | MR | Zbl
[7] Hill P. D.: Criteria for freeness in groups and valuated vector spaces. Lect. Notes in Math. 616 (1977), 140–157. | MR | Zbl
[8] Hill P. D., Megibben C. K.: On direct sums of countable groups and generalizations. Études sur les Groupes Abéliens, Paris (1968), 183–206. | MR | Zbl
[9] Hill P. D., Megibben C. K.: Extending automorphisms and lifting decompositions in abelian groups. Math. Annalen 175 (1968), 159–168. | MR | Zbl
[10] Megibben C. K.: The generalized Kulikov criterion. Canad. J. Math. 21 (1969), 1192–1205. | MR | Zbl
[11] Megibben C. K.: Countable extensions of simply presented groups. Internet information.
[12] Wallace K. D.: On mixed groups of torsion-free rank one with totally projective primary components. J. Algebra 17 (1971), 482–488. | MR | Zbl
[13] Nunke R. J.: Purity and subfunctors of the identity. Topics in Abelian Groups, Scott Foresman and Co., (1963), 121–171. | MR