Countable extensions of torsion Abelian groups
Archivum mathematicum, Tome 41 (2005) no. 3, pp. 265-272 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose $A$ is an abelian torsion group with a subgroup $G$ such that $A/G$ is countable that is, in other words, $A$ is a torsion countable abelian extension of $G$. A problem of some group-theoretic interest is that of whether $G \in \mathbb K$, a class of abelian groups, does imply that $A\in \mathbb K$. The aim of the present paper is to settle the question for certain kinds of groups, thus extending a classical result due to Wallace (J. Algebra, 1981) proved when $\mathbb K$ coincides with the class of all totally projective $p$-groups.
Suppose $A$ is an abelian torsion group with a subgroup $G$ such that $A/G$ is countable that is, in other words, $A$ is a torsion countable abelian extension of $G$. A problem of some group-theoretic interest is that of whether $G \in \mathbb K$, a class of abelian groups, does imply that $A\in \mathbb K$. The aim of the present paper is to settle the question for certain kinds of groups, thus extending a classical result due to Wallace (J. Algebra, 1981) proved when $\mathbb K$ coincides with the class of all totally projective $p$-groups.
Classification : 20K10, 20K35
Keywords: countable factor-groups; $\Sigma $-groups; $\sigma $-summable groups; summable groups; $p^{\omega + n}$-projective groups
@article{ARM_2005_41_3_a2,
     author = {Danchev, Peter},
     title = {Countable extensions of torsion {Abelian} groups},
     journal = {Archivum mathematicum},
     pages = {265--272},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2188382},
     zbl = {1114.20030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a2/}
}
TY  - JOUR
AU  - Danchev, Peter
TI  - Countable extensions of torsion Abelian groups
JO  - Archivum mathematicum
PY  - 2005
SP  - 265
EP  - 272
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a2/
LA  - en
ID  - ARM_2005_41_3_a2
ER  - 
%0 Journal Article
%A Danchev, Peter
%T Countable extensions of torsion Abelian groups
%J Archivum mathematicum
%D 2005
%P 265-272
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a2/
%G en
%F ARM_2005_41_3_a2
Danchev, Peter. Countable extensions of torsion Abelian groups. Archivum mathematicum, Tome 41 (2005) no. 3, pp. 265-272. http://geodesic.mathdoc.fr/item/ARM_2005_41_3_a2/

[1] Danchev P. V.: Commutative group algebras of $\sigma $-summable abelian groups. Proc. Amer. Math. Soc. (9) 125 (1997), 2559–2564. | MR | Zbl

[2] Danchev P. V.: Commutative group algebras of abelian $\Sigma $-groups. Math. J. Okayama Univ. 40 (1998), 77–90. | MR

[3] Danchev P. V.: Commutative group algebras of highly torsion-complete abelian $p$-groups. Comment. Math. Univ. Carolin. (4) 44 (2003), 587–592. | MR | Zbl

[4] Danchev P. V.: Commutative group algebras of summable abelian $p$-groups. Comm. Algebra, in press.

[5] Danchev P. V.: Generalized Dieudonné criterion. Acta Math. Univ. Comenian. (1) 74 (2005), 15–24. | MR | Zbl

[6] Fuchs L.: Infinite Abelian Groups. Volumes I and II, Mir, Moskva, 1974 and 1977. (In Russian.) | MR | Zbl

[7] Hill P. D.: Criteria for freeness in groups and valuated vector spaces. Lect. Notes in Math. 616 (1977), 140–157. | MR | Zbl

[8] Hill P. D., Megibben C. K.: On direct sums of countable groups and generalizations. Études sur les Groupes Abéliens, Paris (1968), 183–206. | MR | Zbl

[9] Hill P. D., Megibben C. K.: Extending automorphisms and lifting decompositions in abelian groups. Math. Annalen 175 (1968), 159–168. | MR | Zbl

[10] Megibben C. K.: The generalized Kulikov criterion. Canad. J. Math. 21 (1969), 1192–1205. | MR | Zbl

[11] Megibben C. K.: Countable extensions of simply presented groups. Internet information.

[12] Wallace K. D.: On mixed groups of torsion-free rank one with totally projective primary components. J. Algebra 17 (1971), 482–488. | MR | Zbl

[13] Nunke R. J.: Purity and subfunctors of the identity. Topics in Abelian Groups, Scott Foresman and Co., (1963), 121–171. | MR