Keywords: generalized pendulum; number of solutions; Jensen’s inequality
@article{ARM_2005_41_2_a8,
author = {Kub\'a\v{c}ek, Zbyn\v{e}k and Rudolf, Boris},
title = {On the number of periodic solutions of a generalized pendulum equation},
journal = {Archivum mathematicum},
pages = {197--208},
year = {2005},
volume = {41},
number = {2},
mrnumber = {2164670},
zbl = {1117.34041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a8/}
}
Kubáček, Zbyněk; Rudolf, Boris. On the number of periodic solutions of a generalized pendulum equation. Archivum mathematicum, Tome 41 (2005) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a8/
[1] Il’yashenko, Y., Yakovenko, S.: Counting real zeros of analytic functions satisfying linear ordinary differential equations. J. Differential Equations 126 (1996), 87–105. | MR
[2] Markushevich, A. I.: Kratkij kurs teorii analitičeskich funkcij. Nauka Moskva 1978. (russian) | MR
[3] Mawhin, J.: Points fixes, points critiques et probl‘emes aux limites. Sémin. Math. Sup. no. 92, Presses Univ. Montréal, Montréal 1985. | MR
[4] Mawhin, J.: Seventy-five years of global analysis around the forced pendulum equation. Proceedings of the Conference Equadiff 9 (Brno, 1997), Masaryk Univ. 1998, pp. 861–876.
[5] Ortega, R.: Counting periodic solutions of the forced pendulum equation. Nonlinear Analysis 42 (2000), 1055–1062. | MR | Zbl
[6] Rachůnková, I.: Upper and lower solutions and topological degree. JMAA 234 (1999), 311–327. | MR
[7] Rudolf, B.: A multiplicity result for a generalized pendulum equation. Proceedings of the 4$^{\text{th}}$ Workshop on Functional Analysis and its Applications, Nemecká 2003, 53–57.