Boundary value problems for first order multivalued differential systems
Archivum mathematicum, Tome 41 (2005) no. 2, pp. 187-195 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present some existence results for boundary value problems for first order multivalued differential systems. Our approach is based on topological transversality arguments, fixed point theorems and differential inequalities.
We present some existence results for boundary value problems for first order multivalued differential systems. Our approach is based on topological transversality arguments, fixed point theorems and differential inequalities.
Classification : 34A60, 34B15, 47H10
Keywords: boundary value problems; multivalued differential equations; topological transversality theorem; fixed points; differential inequalities
@article{ARM_2005_41_2_a7,
     author = {Boucherif, A. and Merabet, N.Chiboub-Fellah},
     title = {Boundary value problems for first order multivalued differential systems},
     journal = {Archivum mathematicum},
     pages = {187--195},
     year = {2005},
     volume = {41},
     number = {2},
     mrnumber = {2164669},
     zbl = {1117.34006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a7/}
}
TY  - JOUR
AU  - Boucherif, A.
AU  - Merabet, N.Chiboub-Fellah
TI  - Boundary value problems for first order multivalued differential systems
JO  - Archivum mathematicum
PY  - 2005
SP  - 187
EP  - 195
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a7/
LA  - en
ID  - ARM_2005_41_2_a7
ER  - 
%0 Journal Article
%A Boucherif, A.
%A Merabet, N.Chiboub-Fellah
%T Boundary value problems for first order multivalued differential systems
%J Archivum mathematicum
%D 2005
%P 187-195
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a7/
%G en
%F ARM_2005_41_2_a7
Boucherif, A.; Merabet, N.Chiboub-Fellah. Boundary value problems for first order multivalued differential systems. Archivum mathematicum, Tome 41 (2005) no. 2, pp. 187-195. http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a7/

[1] Agarwal R. P., O’Regan D.: Set valued mappings With applications in nonlinear analysis. Taylor & Francis, London 2002. | MR | Zbl

[2] Andres J.: Nielsen number and multiplicity results for multivalued boundary value problems. Boston MA, Birkhäuser, Progr. Nonlinear Differ. Equ. Appl. 43 (2001), 175–187. | MR | Zbl

[3] Andres J., Bader R.: Asymptotic boundary value problems in Banach spaces. J. Math. Anal. Appl. 274 (2002), 437–457. | MR | Zbl

[4] Anichini G.: Boundary value problems for multivalued differential equations and controllability. J. Math. Anal. Appl. 105 (1985), 372–382. | MR

[5] Anichini G., Conti G.: Boundary value problems for systems of differential equations. Nonlinearity 1 (1988), 1–10.

[6] Aubin J. P., Cellina A.: Differential inclusions, Set-valued maps and viability theory. Springer Verlag, New York 1984. | MR | Zbl

[7] Bernfeld S., Lakshmikantham V.: An introduction to nonlinear boundary value Problems. Academic Press, New York 1974. | MR | Zbl

[8] Deimling K.: Multivalued differential equations. W. de Gruyter, Berlin 1992. | MR | Zbl

[9] Deimling K.: Multivalued differential equations and dry friction problems. in Delay and Differential Equations, (A. M. Fink, R. K. Miller and W. Kliemann, Eds.), 99–106, World Scientific Publ.,N. J. 1992. | MR | Zbl

[10] Frigon M.: Application de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires. Dissertationes Math. 296, PWN, Warsaw 1990. | MR

[11] Granas A., Dugundji J.: Fixed point theory. Springer Verlag 2003. | MR | Zbl

[12] Granas A., Frigon M.: Topological methods in differential equations and inclusions. Kluwer Academic Publ., Dordrecht 1995. | MR | Zbl

[13] Hu S., Papageorgiou N. S.: Handbook of multivalued analysis. 2 Applications, Kluwer Acad. Publ. Dordrecht 2000. | MR | Zbl

[14] Lasota A., Opial Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. | MR | Zbl

[15] Medved M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214 (1997), 349–366. | MR | Zbl

[16] Miller L. E.: Generalized boundary value problems. J. Math. Anal. Appl. 74 (1980), 233–246. | MR | Zbl

[17] O’Regan D.: Fixed-point theory for the sum of two operators. Applied Math. Letters 9 1 (1996), 1–8. | Zbl

[18] Pruzko T.: Topological degree methods in multivalued boundary value problems. Nonlinear Anal. T. M. A. 5 9 (1982), 959–973. | MR

[19] Senkyrík M., Guenther R.: Boundary value problems with discontinuities in the spacial variable. J. Math. Anal. Appl. 193 (1995), 296–305. | MR