An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications
Archivum mathematicum, Tome 41 (2005) no. 2, pp. 229-241 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The linear differential equation $(q):y''=q(t)y$ with the uniformly almost-periodic function $q$ is considered. Necessary and sufficient conditions which guarantee that all bounded (on $\mathbb{R}$) solutions of $(q)$ are uniformly almost-periodic functions are presented. The conditions are stated by a phase of $(q)$. Next, a class of equations of the type $(q)$ whose all non-trivial solutions are bounded and not uniformly almost-periodic is given. Finally, uniformly almost-periodic solutions of the non-homogeneous differential equations $y''=q(t)y+f(t)$ are considered. The results are applied to the Appell and Kummer differential equations.
The linear differential equation $(q):y''=q(t)y$ with the uniformly almost-periodic function $q$ is considered. Necessary and sufficient conditions which guarantee that all bounded (on $\mathbb{R}$) solutions of $(q)$ are uniformly almost-periodic functions are presented. The conditions are stated by a phase of $(q)$. Next, a class of equations of the type $(q)$ whose all non-trivial solutions are bounded and not uniformly almost-periodic is given. Finally, uniformly almost-periodic solutions of the non-homogeneous differential equations $y''=q(t)y+f(t)$ are considered. The results are applied to the Appell and Kummer differential equations.
Classification : 34C27
Keywords: linear second-order differential equation; Appell equation; Kummer equation; uniformly almost-periodic solution; bounded solution; phase
@article{ARM_2005_41_2_a10,
     author = {Stan\v{e}k, Svatoslav},
     title = {An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications},
     journal = {Archivum mathematicum},
     pages = {229--241},
     year = {2005},
     volume = {41},
     number = {2},
     mrnumber = {2164672},
     zbl = {1117.34043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a10/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications
JO  - Archivum mathematicum
PY  - 2005
SP  - 229
EP  - 241
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a10/
LA  - en
ID  - ARM_2005_41_2_a10
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications
%J Archivum mathematicum
%D 2005
%P 229-241
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a10/
%G en
%F ARM_2005_41_2_a10
Staněk, Svatoslav. An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications. Archivum mathematicum, Tome 41 (2005) no. 2, pp. 229-241. http://geodesic.mathdoc.fr/item/ARM_2005_41_2_a10/

[1] Appell P.: Sur les transformations des équations différentielles linéaires. C. R. Acad. Sci. Paris 91 (1880), 211–214.

[2] Beckenbach E. F., Bellman R.: Inequalities. Springer 1961. | MR | Zbl

[3] Borůvka O.: Linear differential transformations of the second order. The English Univ. Press, London 1971. | MR

[4] Borůvka O.: Sur les blocs des équations différentielles $y^{\prime \prime }=q(t)y$ aux coefficients périodiques. Rend. Mat. 8 (1975), 519–532. | MR | Zbl

[5] Borůvka O.: The theory of global properties of second-order ordinary differential equations. Differentsial’nye Uravneniya, 12 (1976), 1347–1383. (in Russian). | MR

[6] Corduneanu C.: Almost Periodic Functions. Wiley, New York 1968. | MR | Zbl

[7] Fink M. A.: Almost periodic differential equations. Springer, New York – Berlin 1974. | MR | Zbl

[8] Guter R. S., Kudryavtsev L. D., Levitan B. M.: Elements of the theory of functions. Pergamon Press, Oxford 1966. | MR | Zbl

[9] Greguš M.: Linear differential equations of the third order. North Holland, Reider Co., Dordrecht-Boston-Lancaster 1986.

[10] Haraux A.: A simple almost-periodicity criterion and applications. J. Differential Equations 66 (1987), 51–61. | MR | Zbl

[11] Hartman P.: Ordinary differential equations. J. Wiley, New York 1964. | MR | Zbl

[12] Hu Z. S., Mingarelli A. B.: On a question in the theory of almost periodic differential equations. Proc. Amer. Math. Soc. 127 (1999), 2665–2670. | MR | Zbl

[13] Levitan B. M.: Almost-periodic functions. G.I.T.-T.L., Moscow 1953 (in Russian). | MR | Zbl

[14] Lillo J. C.: Approximate similarity and almost periodic matrices. Proc. Amer. Math. Soc. 12 (1961), 400-407. | MR | Zbl

[15] Markus L., Moore R. A.: Oscillation and disconjugacy for linear differential equations with almost periodic coefficients. Acta mathematica 96 (1956), 99-123. | MR | Zbl

[16] Mingarelli A. B., Pu P. Q., Zheng L.: A Counter-example in the theory of almost periodic differential equations. Rocky Mountain J. Math. 25 (1995), 437–440. | MR | Zbl

[17] Rudin W.: Principles of Mathematical Analysis. McGraw-Hill, New York 1964. | MR | Zbl

[18] Staněk S.: On some properties of solutions of the disconjugate equation $y^{\prime \prime }=q(t)y$ with an almost periodic coefficient $q$. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 25 (1986), 31–56. | MR | Zbl