Fixed points theorems of non-expanding fuzzy multifunctions
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 117-122 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove the existence of a fixed point of non-expanding fuzzy multifunctions in $\alpha $-fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in $\alpha $-fuzzy ordered sets.
We prove the existence of a fixed point of non-expanding fuzzy multifunctions in $\alpha $-fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in $\alpha $-fuzzy ordered sets.
Classification : 03E72, 06A99, 06D72, 47H04, 47H10, 54H25
Keywords: fuzzy set; $\alpha $-fuzzy preorder relation; $\alpha $-fuzzy order relation; non-expanding fuzzy multifunction; fixed point
@article{ARM_2005_41_1_a9,
     author = {Stouti, Abdelkader},
     title = {Fixed points theorems of non-expanding fuzzy multifunctions},
     journal = {Archivum mathematicum},
     pages = {117--122},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2142147},
     zbl = {1108.03053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a9/}
}
TY  - JOUR
AU  - Stouti, Abdelkader
TI  - Fixed points theorems of non-expanding fuzzy multifunctions
JO  - Archivum mathematicum
PY  - 2005
SP  - 117
EP  - 122
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a9/
LA  - en
ID  - ARM_2005_41_1_a9
ER  - 
%0 Journal Article
%A Stouti, Abdelkader
%T Fixed points theorems of non-expanding fuzzy multifunctions
%J Archivum mathematicum
%D 2005
%P 117-122
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a9/
%G en
%F ARM_2005_41_1_a9
Stouti, Abdelkader. Fixed points theorems of non-expanding fuzzy multifunctions. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 117-122. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a9/

[1] Beg I., Islam M.: Fuzzy order linear spaces. J. Fuzzy Math. 3 (3) (1995), 659–670. | MR

[2] Beg I.: Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets. J. Fuzzy Math. 6 (1) (1998), 127–131. | MR | Zbl

[3] Beg I.: 0n fuzzy Zorn’s lemma. Fuzzy Sets and Systems 101 (1999), 181–183. | MR

[4] Beg I.: Fixed points of expansive mappings on fuzzy preordered sets. J. Fuzzy Math., 7(2)(1999), 397-400. | MR | Zbl

[5] Beg I.: Fixed points of fuzzy monotone maps. Arch. Math. (Brno) 35 (1999), 141–144. | MR | Zbl

[6] Bose B. K., Sahani D.: Fuzzy mappings and fixed point theorems. Fuzzy Sets and Systems 21 (1987), 53–58. | MR | Zbl

[7] Billot A.: Economic theory of fuzzy equilibria. Lecture Notes in Econom. and Math. Systems 373 Springer-Verlag, Berlin 1992. | MR | Zbl

[8] Fang J. X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 46 (1992), 107–113. | MR | Zbl

[9] Hadzic O.: Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces. Fuzzy Sets and Systems 29 (1989), 115–125. | MR

[10] Heilpern S.: Fuzzy mappings and fixed point theorems. J. Math. Anal. Appl. 83 (1981), 566–569. | MR

[11] Kaleva O.: A note on fixed points for fuzzy mappings. Fuzzy Sets and Systems 15 (1985), 99–100. | MR | Zbl

[12] Negoita C. V., Ralescu D. A.: Applications of fuzzy sets to systems analysis. Fuzzy Sets and Systems 1 (1978), 155–167.

[13] Stouti A.: Fixed point theory for fuzzy monotone multifunctions. J. Fuzzy Math. 11 (2) (2003), 455–466. | MR | Zbl

[14] Stouti A.: Fixed points of fuzzy monotone multifunctions. Arch. Math. (Brno) 39 (2003), 209–212. | MR | Zbl

[15] Stouti A.: A fuzzy version of Tarski’s fixpoint Theorem. Arch. Math. (Brno) 40 (2004), 273–279. | MR | Zbl

[16] Stouti A.: Fixed points of expanding fuzzy multifunctions. J. Fuzzy Math. 12(4) (2004), 1542–1546. | MR | Zbl

[17] Venugopalan P.: Fuzzy ordered sets. Fuzzy Sets and Systems 46 (1992), 221–226. | MR | Zbl

[18] Zadeh L. A.: Fuzzy sets. Information and Control 8 (1965), 338–353. | MR | Zbl

[19] Zadeh L. A.: Similarity and fuzzy ordering. Information Sciences 3 (1971), 177–200. | MR